
LoSHa: A General Framework for Scalable Locality Sensitive
Hashing

Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan, Ruihao Zhao
Department of Computer Science and Engineering

The Chinese University of Hong Kong
{j�i,jcheng,fyang,yzhuang,yjzhao,xyan,rhzhao}@cse.cuhk.edu.hk

ABSTRACT
Locality Sensitive Hashing (LSH) algorithms are widely adopted
to index similar items in high dimensional space for approximate
nearest neighbor search. As the volume of real-world datasets keeps
growing, it has become necessary to develop distributed LSH so-
lutions. Implementing a distributed LSH algorithm from scratch
requires high development costs, thus most existing solutions are
developed on general-purpose platforms such as Hadoop and Spark.
However, we argue that these platforms are both hard to use for
programming LSH algorithms and ine�cient for LSH computation.
We propose LoSHa, a distributed computing framework that re-
duces the development cost by designing a tailor-made, general
programming interface and achieves high e�ciency by exploring
LSH-speci�c system implementation and optimizations. We show
that many LSH algorithms can be easily expressed in LoSHa’s API.
We evaluate LoSHa and also compare with general-purpose plat-
forms on the same LSH algorithms. Our results show that LoSHa’s
performance can be an order of magnitude faster, while the imple-
mentations on LoSHa are even more intuitive and require few lines
of code.

1 INTRODUCTION
Nearest neighbor (NN) search, which �nds items similar to a given
query item, serves as the foundation of numerous applications such
as entity resolution, de-duplication, sequence matching, recom-
mendation, similar item retrieval, and event detection. However,
many indexing methods for NN search are ine�cient when data
dimensionality increases, and eventually perform even worse than
brute-force linear scans [20]. Unfortunately, many types of data in
real world, including texts, images, audios, DNA sequences, etc.,
are expressed and processed as high dimensional vectors.

To �nd similar items in high dimensional space, recent solu-
tions focus on �nding approximate nearest neighbors (ANN), for
which Locality Sensitive Hashing (LSH1) [13] is widely recognized
as the most e�ective method [20, 31]. The idea of LSH is that, by

1In this paper, LSH refers a broad class of algorithms [14, 32] and will be discussed in
Section 2.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5022-8/17/08. . . $15.00
http://dx.doi.org/10.1145/3077136.3080800

using carefully designed hash functions, similar items are hashed
to the same bucket with higher probability and one only needs
to check a small number of buckets for items similar to a query.
LSH can be implemented on relational databases and has sub-
linear querying time complexity regardless of the distribution of
data/queries [31]. Due to its outstanding query performance and
favorable characteristics, LSH algorithms have been extensively
studied [7, 8, 12, 14, 19, 31, 32, 36]. There are also numerous appli-
cations of LSH in computer vision, machine learning, data mining
and database. Due to its signi�cance, LSH is cited as one of the two
pieces of “Breakthrough Research” (the other one being MapRe-
duce) by the 50th Anniversary issue of Communications of the
ACM.

As we will discuss in Section 2.2.1, LSH algorithms are either
single-probing ormulti-probing. Query processingwith single-probing
LSH is simple but requires hundreds of hash tables in order to
achieve good accuracy [30], which results in high memory and
CPU usage. LSH algorithms developed in the early days, such as
MinHash [2], SimHash [3] and E2LSH [5], belong to this category.
In recent years, multi-probing LSH algorithms were proposed to
reduce the number of hash tables [7, 12, 20, 24, 29, 31, 36], but the
tradeo� is that query processing also becomes more complicated.

LSH is usually used to handle large-scale data (e.g., billions of
images [29] or tweets [30]), for which distributed LSH has become
necessary (to address the resource limitation of a single machine).
However, implementing distributed multi-probing LSH is challeng-
ing due to the following two main reasons.

First, query processing with multi-probing LSH is complicated
to be distributed. In fact, existing multi-probing LSH algorithms
mainly adopt external-memory implementations [7, 12, 20, 29, 31,
36], which however have limited query throughput and long delay
due to the computing capacity of a single machine.

Second, there is a lack of a general programming framework to
implement LSH algorithms on existing general-purpose distributed
frameworks such as Hadoop and Spark. While there are works
such as Pregel [25] and PowerGraph [10] provide a general pro-
gramming framework for graph processing [23], and parameter
servers [15] for machine learning, there is no such framework for
LSH implementations. For this reason, most of the distributed solu-
tions [1, 18, 21, 22, 27, 28, 30] are single-probing LSH only, whose
query processing is simple and easy to implement.

To address the above problems, we set out to design a general plat-
form, called LoSHa, for LSH workloads with tailor-made abstrac-
tions and user-friendly APIs. LoSHa o�ers a simple query-answer
programming paradigm (resembling map-reduce) so that users can
express di�erent types of LSH algorithms (especially multi-probing
LSH) easily and concisely, while implementation details such as

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

635

https://doi.org/http://dx.doi.org/10.1145/3077136.3080800

de�ning complicated data�ow, choosing/implementing di�erent
operators (e.g., joins, de-duplication), workload distribution, and
fault tolerance, are all shielded from users.

We implemented LoSHa as a subsystem upon a general-purpose
platform (i.e., Husky [16, 33, 34]) to demonstrate its feasibility. We
explored LSH speci�c data layout and system optimizations, and
evaluated LoSHa on large real datasets, including 1 billion tweets
and 1 billion image descriptors. Our results show that LoSHa is over
an order of magnitude faster than existing LSH implementations [1,
28] on Spark and Hadoop, and can handle 10 times larger datasets
with the same computing resources.

2 BACKGROUND
In this section, we give the background of LSH and highlight the
challenges of making LSH applications distributed.

2.1 Notion and Notations of LSH
Indyk and Motwani [13] introduced the notion of LSH as follows.

De�nition 2.1. Let B(q, r) denote a ball centered at a point q
with radius r . A hash function family H = {h : Rd ! U } is
(r1, r2,p1,p2)-sensitive, if given any q,o 2 Rd ,

(1) if o 2 B(q, r1), then PrH[h(o) = h(q)] � p1;
(2) if o < B(q, r2), then PrH[h(o) = h(q)]  p2.

A useful LSH family should satisfy inequality r1 < r2 andp1 > p2.
For any d-dimensional point o 2 Rd , a single hash function h 2 H
can hash o to a value � 2 U . Two similar points with distance
less than or equal to r1 have a high probability of at least p1 to be
hashed to the same value, while two dissimilar points with distance
larger than r2 have a low probability of at most p2 to be hashed
to the same value. Some common LSH families include min-wise
permutation for Jaccard distance [2], random projection for angular
distance [3], and 2-stable projection for Euclidean distance [5], also
known as MinHash, SimHash, and E2LSH, respectively.

Intuitively, a hash value � 2 U represents a bucket that con-
tains similar items (i.e., points). We denote the probability of two
items being hashed to the same value as the to-same-bucket prob-
ability. To improve the accuracy of LSH, multiple hash tables are
generated, and multiple hash values are concatenated and used
as a whole for each hash table. Speci�cally, L � 1 hash tables,
i.e., G1,G2, . . . ,GL , are generated. For each hash table, k � 1 ran-
domly chosen hash functions, (h1,h2, . . . ,hk), are used, and the
k hash values of an item o are concatenated to form a signature,
G(o) = (h1(o),h2(o), . . . ,hk (o)). In other words, L signatures, i.e.,
G1(o),G2(o), . . . ,GL(o), are obtained for the item o. The purpose of
using k hash functions and L hash tables is to enlarge the gap of
to-same-bucket probability between similar items and dissimilar
items [27].

LSH is typically conducted in two phases. The �rst phase is
pre-processing, which inserts data items into the hash tables. LSH
projects each d-dimensional data item into a k-dimensional vector,
i.e., a k-dimensional signatureGi (o), and inserts the item into the
corresponding bucket in hash table Gi , for 1  i  L, where Gi (o)
is the bucket ID. The second phase is querying. Given a query item
q, we �rst obtain L bucket IDs for q in the same way as for a data
item. Then, data items in the same bucket as q (called candidate

answers) in each hash table are evaluated to obtain the �nal an-
swer (e.g., items within a given distance from q). LSH achieves
sub-linear querying complexity [13, 31] (as only candidate answers
are evaluated) and hence is attractive in practice.

2.2 The State-of-the-art LSH
We �rst categorize existing LSH algorithms and then analyze the
di�culties of implementing them on existing distributed frame-
works.

2.2.1 LSHAlgorithms. Querying by LSHwas originally designed
to probe a single bucket (i.e., the bucket q is hashed to) in each of
the L hash tables. We name this querying method as single-probing
LSH and typical examples include MinHash [2], SimHash [3] and
E2LSH [5]. Single-probing LSH is simple [1, 18, 21, 22, 27, 28], but it
su�ers from two weaknesses. First, single-probing LSH is sensitive
to r1 and r2, but the distance from a query to its nearest neighbor
could be any number in practice. To guarantee a high recall (i.e.,
most of the query answer are found in the set of candidate an-
swers), a large number of hash tables have to be generated [24, 31],
which consumes a large amount of memory and incurs high de-
duplication overhead to remove duplicate candidate answers from
the L buckets. For example, 780 hash tables are created in PLSH [30].
Second, single-probing LSH has poor recall if k is large (e.g., 64 or
128) [14, 19]. Thus, it is not applicable to most algorithms [14, 32]
that learn hash functions from data and map each item to a hash
code of long bits for better precision [19].

To address the weaknesses of single-probing LSH, many multi-
probing LSH algorithms have been proposed [7, 12, 20, 24, 29, 31, 36].
The main idea is that, if similar items are not in the same bucket as
q, they are likely in other buckets in the hash table that are “nearby”
q’s bucket because the hashing is locality sensitive. If we can compute
new signatures corresponding to these “nearby” buckets, we can
probe multiple buckets in the same hash table to improve the recall.
As a result, multi-probing signi�cantly reduces the number of hash
tables [7, 12, 20, 24, 36] and e�ectively improves the recall when k
is large [19, 32].

2.2.2 Distributed LSH. Although there aremany LSH algorithms,
no one can dominate others in all aspects (e.g., precision, recall and
e�ciency) [14, 26, 32]. And one common problem they have is the
handling of large-scale data (e.g., billion-scale tweets or images), for
which the typical solution is by distributed computing. To reduce
the development cost, general-purpose distributed frameworks are
normally used and most of distributed LSH solutions were devel-
oped on Hadoop and Spark. However, these distributed solutions
are mostly single-probing LSH [1, 18, 21, 22, 27, 28] and su�er from
the problems presented in Section 2.2.1. In addition, it is also chal-
lenging to implement distributed multi-probing LSH on Hadoop
and Spark, due to the following two main factors.

First, to program multi-probing LSH, users need to de�ne a
complicated data�ow consisting of many steps. Each step involve
multiple operations, and users have to carefully select suitable
operators (e.g., which join operator to use) and consider many
other implementation details (e.g., how to avoid unnecessary re-
computation by data caching on Spark). It is easy to make a wrong
choice in some steps, leading to an ine�cient or even incorrect

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

636

q1 q2 q3

Queries

query

mapping

answer

b1

Buckets
b2

Items
i1 i2 i3

Figure 1: Query processing in LoSHa

implementation, much debugging and performance tuning e�orts.
To address these problems, we design higher-level abstractions and
user-friendly APIs in Section 3, and demonstrate with examples in
Section 4 how to implement multi-probing LSH algorithms.

Second, existing general-purpose platforms are not optimized for
LSH. For example, in the LSH implementation on these platforms,
queries and items are joined on signatures, which means that L
copies of items and queries need to be shu�ed and sent over the
network, leading to high network tra�c and enormous memory
consumption. Furthermore, the execution strategies of their opera-
tors (e.g., join) are not best �t for LSH workloads. To give e�cient
implementations, users need to do the optimizations by themselves.
In Section 5, we explore LSH-speci�c optimizations so that users
are o�-loaded from these di�cult tasks.

3 LOSHA PROGRAMMING FRAMEWORK
A practical distributed computing framework must provide an easy-
to-use programming interface in order to lower the development
cost. One well-known example is MapReduce [6], which o�ers a
simple programming interface for easy implementation of many
distributed algorithms for data processing. Similarly, for scalable
LSH computation, the most important �rst step is to design a uni�ed
programming model and a simple API. However, this is challenging
because there are hundreds of LSH algorithms and many of them
are complicated to implement, especially parallelizing them. We
present the details of the LoSHa programming model in this section.

3.1 Overall Framework
LoSHa uses three data abstractions, Query, Bucket, and Item, to
model input queries, buckets, and items, respectively. LoSHa �rst
pre-processes data items to create a set of Item objects. It also
creates a set of Bucket objects, where each Bucket object has a
bucket ID, bId, and all Item objects having a signature equal to bId
belong to this Bucket object. Queries are also processed similarly
as items to create a set of Query objects.

Query processing in LoSHa requires users to specify the query-
ing logic in two user-de�ned functions, query and answer. Figure 1
shows the �ow of query processing, described as follows. LoSHa
processes LSH queries iteratively. In each iteration, each Query

object calls the query function to �nd a set of potential buckets that
contain candidate items, and sends a message QueryMsg to each
potential bucket, where QueryMsg contains the content of the query
(and any other information required to evaluate the query). When
a Bucket object receives a QueryMsg message, it forwards the mes-
sage to its Item objects. When an Item object receives a QueryMsg
message, it calls the answer function to evaluate the query (e.g.,

Listing 1 Query API in LoSHa
template<typename Id,

typename Content,

typename QueryMsg = IdContent<Id, Content>,

typename AnswerMsg = std::pair<Id, float>>
class Query
:public IdContent<Id, Content>{

public:
virtual void query(Factory<Id, Content>& fty);

const IdContent<Id, Content>& getQuery();

const std::vector<AnswerMsg>& getAnswerMsg();

void sendToBucket(Sig& bId, QueryMsg& msg);

void setFinished();

};

calculate the distance between the query and itself), and sends the
results (as an AnswerMsg message) back to the Query object. Then
in the next iteration, each Query object decides whether the query
evaluation is completed or should continue based on the results
received from the candidate Item objects.

Iterative processing allows multi-probing LSH to be easily im-
plemented; while for conventional single-probing LSH, we simply
run just one iteration. LoSHa hides the complicated data�ow in the
iterative process from users. The underlying system also optimizes
key operations such as join and de-duplication, and automatically
handles workload distribution and fault tolerance.

3.2 Application Programming Interface
In LoSHa, Query, Bucket and Item objects and their related opera-
tions are implemented by the respective Query, Bucket and Item

classes in LoSHa’s API. To program with LoSHa, users only need to
subclass the Query and Item classes, and overload the query and
answer functions.

The APIs for Query and Item are shown in Listings 1 and 2.
Users specify four template arguments, Id, Content, QueryMsg
and AnswerMsg. LoSHa expresses a query or an item by an (Id,

Content) pair, denoted by IdContent, where Id is the type of the
ID of the query/item and is used to locate the query/item, and
Content is the type of the content of the query/item. LoSHa stores
Content in a vector. The i-th element can be either the value of the
i-th feature of the query/item (i.e., dense vector), or a (pos,�) pair
representing the value � of the pos-th feature (i.e., sparse vector).
The messages sent out by a query and an item are of type QueryMsg
and AnswerMsg, respectively. For example, QueryMsg can be the
query itself, i.e., IdContent, or just the query ID. An AnswerMsg

message sent by an item is usually an (Id, dist) pair, where Id
is the item ID and dist is the distance between the query and the
item. A Query or Item object may also contain user-de�ned �elds
to carry any information useful for query processing.

Query API. Users implement the query function to specify
the operations to be performed by a Query object (see an exam-
ple in Listing 3). The Query class provides a number of built-in
functions, and the query function may use getQuery to obtain a
query’s IdContent, use getAnswerMsg to collect messages sent by
candidate items, and use setFinished to �nish the evaluation of a
query when the query predicate is satis�ed. Signatures of a query

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

637

Listing 2 Item API in LoSHa
template<typename Id,

typename Content,

typename QueryMsg = IdContent<Id, Content>,

typename AnswerMsg = std::pair<Id, float>>
class Item
:public IdContent<Id, Content>{

public:
virtual void answer(Factory<Id, Content>& fty);

const IdContent<Id, Content>& getItem();

const std::vector<QueryMsg>& getQueryMsg();

void sendToQuery(Id& qId, AnswerMsg& msg);

};

Listing 3 Single-probing LSH in LoSHa
class LSHQuery : public Query<int, float>{
public:
void query(Factory<int, float>& fty){

//obtain buckets (i.e., signatures) to probe

for(auto& bId : fty.calSigs(*this))
sendToBucket(bId, this->getQuery());

}

};

class LSHItem : public Item<int, float>{
public:
void answer(Factory<int, float>& fty){

//get messages to evaluate

for(auto& q: getQueryMsg()){

float dist = fty.calDist(q, *this);
//output qualified items

}

}

};

can be calculated by functions provided in the Factory API (to be
presented shortly). Each signature corresponds to one bucket ID,
which is of type Sig (a k dimensional vector in LoSHa by default),
and sendToBucket uses the ID to send messages to the bucket.

Item API. Users may use getQueryMsg in the Item class to
collect messages forwarded to the item by Bucket objects, and then
speci�es in the answer function how to process the messages to
evaluate the query (e.g., calculate the distance between the item
and the query). The results are then sent via an AnswerMsgmessage
to the corresponding Query object by sendToQuery.

Factory API. Many types of metric spaces are de�ned for di�er-
ent LSH applications. A di�erent metric space requires a di�erent
distance calculation and signature computation. The Factory API
allows three user-de�ned functions to be overloaded. Users can over-
load the calDist function to calculate the distance between two
points in the given metric space, and the calSigs function to com-
pute the signatures for a given point. Some LSHs (e.g., E2LSH [5])
�rst project an item to a real value and then round it to an integer to
obtain the �nal hash value for the item. Rounding loses proximity
information, which is useful for designing some multi-probing LSH
strategy. Thus, we provide another function, calProjs, for users to
obtain the un-rounded projected real values of a query or an item.

LoSHa supports a Factory librarywhich includesmany common
metrics such as Hamming distance, Jaccard distance, Euclidean
distance, Angular distance, etc. For a wide range of LSH algorithms,
users may simply call functions for their applications using any of

these metrics, and focus on the design of the querying logic. Users
may also implement their own Factory functions for a new metric.

An example. We illustrate how to program with LoSHa’s API
by implementing a single-probing LSH algorithm, as shown in
Listing 3. The query function calls calSigs of the Factory class
to compute the signatures of a query, i.e., the IDs of the potential
buckets to be probed, and then calls sendToBucket to send the
QueryMsgmessage to each potential bucket. The QueryMsgmessage
is just the query itself in this application.

The answer function simply checks each QueryMsg message
forwarded to an item by its bucket, and calls the calDist function
of the Factory class to calculate the distance between the item and
the query in QueryMsg. The quali�ed answers are then written to
the output.

The single-probing LSH implementation is simple. For multi-
probing LSH, we only need to specify the multi-probing strategy in
the query function, which we discuss in the following subsection,
while in the answer function we simply use sendToQuery to send
the results back to the query (instead of writing to the output).

3.3 Multi-probing LSH Strategies
Many multi-probing LSH algorithms have been proposed for var-
ious application scenarios [7, 20, 29, 31]. In order to provide a
general programming framework for LSH implementations, we
identify common patterns in these algorithms. Speci�cally, in the
�rst iteration, we probe buckets as in single-probing. If the query
predicate is not satis�ed (e.g., less than K similar items are found),
new signatures (i.e., new bucket IDs) are generated according to a
multi-probing strategy, and we continue probing these new poten-
tial buckets in the next iteration. To demonstrate our framework
can support multiple probings well, we adopt two strategies in the
experiments and present them below.

Candidate expansion using similar items. The main idea of
this strategy is that similar items are more likely to be clustered
together. Assume o is a similar item of q returned in the current
iteration from the l-th hash table, where 1  l  L. For each o, the
query function computes a set of potential buckets (for the next
iteration) with IDs equal to G1(o), . . . ,Gl�1(o),Gl+1(o), . . . ,GL(o).
Since o is returned from the bucket with ID Gl (o) in the l-th hash
table, we do not probe this bucket again to avoid duplicate probing.
This strategy is good for radius-based search (i.e., return neighbors
within a speci�c distance) as shown in Section 6.2.

Adjusted signatures. Many LSH algorithm [19, 20, 24] will
�rst hash a point to a real value, then truncate it to an integer.
The truncation may lose some proximity information between two
points. For example, an E2LSH function [5] may hash two point
q and o to values 1.001 and 0.999, which are then truncated to 1
and 0, respectively. Although the di�erence between q and o is
only 0.002, it is enlarged by the truncation to 1. Such loss can be
dismissed by adjusting the hash value of q from 1 to 0, and the idea
has been used to design multi-probing LSH strategies in [24]. We
implement the idea in LoSHa as follows. Let ri (q) be the real value
that is truncated to give hi (q), where 1  i  k . We �rst calculate
di (q) = ri (q) � hi (q), sort di (q) for 1  i  k in ascending order
of their values, and keep the sorted list in q’s data �eld. Then, in
the i-th iteration after the �rst iteration, if the query predicate is

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

638

Listing 4 Bucket API in LoSHa
template<typename Id,

typename Content,

typename QueryMsg,

typename AnswerMsg>

class Bucket{
public:
virtual void mapping(Factory<Id, Content>& fty);

const std::vector<QueryMsg>& getQueryMsg();

void sendToQuery(Id& qId, AnswerMsg& msg);

};

not satis�ed, let dj (q) be the i-th value in the sorted list, the query
function computes a new potential bucket ID by adjusting the j-th
hash value in q’s signature. This strategy signi�cantly improves
the quality of returned answers for k-nearest-neighbor search as
reported in Section 6.4.

3.4 Support for Non-Querying Applications
Some applications of LSH do not require a querying process. For
example, for overlapping clustering applied in Google News [4], we
can implement it in MapReduce by �rst computing the signatures
of the items in mappers and then distributing the items to reducers
based on their L signatures. Each reducer then simply outputs
the items distributed to it, labeling them as in the same cluster.
Although LoSHa is a framework designed for query processing, we
show that LoSHa can also handle such a non-querying workload
as easily as MapReduce using the Bucket API given in Listing 4.

We consider each item as a query so that Query acts as Mapper
and the query function acts as the map function, while the Item class
is simply not used here. We also subclass the Bucket class, which
acts as Reducer, and the mapping function of Bucket acts as the
reduce function. In addition, our framework also supports e�cient
implementation of iterative algorithms which are expensive when
implemented on the MapReduce framework.

4 APPLICATIONS
In this section, we illustrate how to implement two advanced

multi-probing LSH algorithms in LoSHa’s framework.

4.1 Multi-Probing PLSH in LoSHa
PLSH [30] is the fastest distributed LSH implementation for

angular distance, but it is single-probing LSH and requires a large
number of hash tables. We implement the LSH algorithm of PLSH
with a multi-probing strategy to reduce the number of hash tables.
We denote our implementation as multi-probing PLSH (MPLSH).

Implementing the query function for multi-probing LSH consists
of three main steps: (1) collecting candidates from the previous itera-
tion, (2) deciding whether to �nish querying, (3) computing a new set
of potential bucket IDs for the next iteration. In Listing 5, the query
function performs the above three steps as follows. First, it collects
the candidate items sent from the previous iteration, if any, into
a container cands. Then, the candidate items in cands are used to
check whether the query predicate is satis�ed (e.g., top K answers
have been found), and to decide whether to �nish or continue the
query evaluation (note that users should output the query results

Listing 5Multi-probing PLSH in LoSHa
class MPLSHQuery
: public Query<int, Content, QueryMsg, int>{

public:
virtual void query(Factory<int, Content>& fty){

//collect candidates into cands

for(auto& item : getAnswerMsg())

cands.insert(item);

auto finished = ... //decide whether to stop

if(finished) setFinished();

//calculate new buckets(signatures) to probe

auto newSigs = ... //calculate new signatures

for(auto& bId : newSigs)

sendToBucket(bId, this->getQuery());
}

};

class MPLSHItem
: public Item<int, Content, QueryMsg, int>{

public:
void answer(Factory<int, Content> &fty){

for(auto& q: getQueryMsg()){

float dist = fty.calDist(q, *this);
if(dist <= 0.9) sendToQuery(q.id, this->id);

}

}

};

before calling setFinished). If the query predicate is not satis�ed
yet, a new set of signatures is then calculated (e.g., using a probing
strategy described in Section 3.3) and sendToBucket is called to
initiate probing the potential buckets for the next iteration.

The answer function is much simpler. We only need to calculate
the distance between a candidate item and a query using a standard
angular distance calculation function in the Factory class, and calls
sendToQuery to send the quali�ed candidates (e.g., items having
an angle smaller than 0.9 from the query) to the query.

4.2 Parallelizing C2LSH with LoSHa
The problem of c-ANN [7] returns a data item o for a query q, such
that d(o,q)  c · d(o⇤,q), where o⇤ is the exact NN of q, d(o,q) and
d(o⇤,q) denote the distance between o and q, and between o⇤ and
q. Many multi-probing LSH solutions have been proposed for this
problem, butmost are external-memory algorithms [7, 20, 29, 31, 36].
With our framework, we can easily implement a parallel version of
these multi-probing LSH algorithms, which utilizes the aggregate
memory of a cluster instead of resorting to the external memory
of a single machine. We illustrate by converting C2LSH [7], one of
the most e�cient single-core multi-probing external-memory LSH
algorithms, into a distributed LSH algorithm with LoSHa.

C2LSH works in Euclidean distance with E2LSH [5] as the hash
function family. Only one hash function is used to compute each
signature, i.e., k = 1, and hence we simply use h(.) for G(.). The
query function probes bucket h(q) in the �rst iteration, and then
in the (i + 1)-th iteration (for i > 0), buckets with ID bId satisfy-
ing bbId/(ci)c = bh(q)/(ci)c are probed. In the i-th iteration, the
query function calls setFinished if it has collected more than K
candidates whose distance to q is less than or equal to ci , or more
than (K + �n) candidates are returned, where � is a user-de�ned
percentage of false positives that are allowed and n is the total
number of items. In C2LSH, an item o is considered as a candidate
only if it collides with q in more than � probed buckets. Thus, in
the answer function, the collision count of an item with each query

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

639

is maintained (as the data �eld of the item). If the count is larger
than � for a query q, the item will be sent to q.

Readers may refer to [7] for theoretical guarantees. We remark
that the implementation of C2LSH on LoSHa takes about 200 lines
of code, while the code of [7] has over 3,000 lines in order to handle
large datasets.

5 SYSTEM IMPLEMENTATION
We now present the implementation details of LoSHa.

5.1 System Architecture
LoSHa is designed to run on a shared-nothing cluster with a typical
master-worker architecture. The master mainly performs progress
checking and coordination on the workers. Each machine in the
cluster may run multiple workers, which perform the LSH compu-
tation on data.

A LoSHa program proceeds in iterations, where each iteration
consists of three steps: query, mapping, and answer. A worker is
processed by one thread. While all workers run in parallel, each
worker executes in sequence the query, mapping, and answer func-
tions for the sets of queries, buckets, and items that are distributed
to the worker. Workers communicate with each other by message
passing, and each worker maintainsW message bu�ers, whereW
is the number of workers in the cluster. For messages to be sent to
workers in the same machine, they can be referred without actual
payload copy and network communication.

5.2 Data Layout
Data items and queries are stored as Item and Query objects in
LoSHa. LoSHa generates L signatures for each item, using the
calSigs function of the Factory class. Then, a Bucket object is
created for each distinct signature (which is the ID of the bucket),
and for all Item objects that have this signature, their item IDs
are stored with this Bucket object. The Item, Bucket and Query

objects are partitioned and distributed among workers by random
hashing on their IDs.

LSH computation often requires to deliver messages to the re-
ceiving objects by their IDs. This can be implemented by hash join,
but it incurs a higher overhead due to random access. We pre-sort
objects in each worker by their IDs, and then sort messages by their
target object IDs (if not sorted already) and hence the join requires
only a linear scan. This allows better data locality and prefetching
to improve performance. However, new queries keep coming in and
there may also be new items inserted. To avoid incurring high cost
in maintaining the pre-sorted order of the objects, we assign the
ID of each new Item/Query object in increasing order as follows:
worker i assigns the j-th new object with ID (i + j ⇤W). In this way,
we can simply append the new object to the end of the pre-sorted
array without re-ordering.

LoSHa’s data layout also allows it to implement an e�cient
two-level join that maps queries �rst to potential buckets and then
to candidate items. In contrast, existing LSH implementations in
MapReduce framework require expensive joins on queries and
items, which have higher CPU and memory usage, and also higher
data transmission cost among the workers, as veri�ed by our ex-
periments.

𝐺1

5
4
1

<0,0> <0,1>

3
2

𝐺2

3
5
1

<0,1> <1,1>

4
2

merge

𝐺

5
4
1

<0,0> <0,1>

3
2

3
5
1

<1,1>

4
2

𝐺1 𝐺1 𝐺2 𝐺2

group

𝐺

4
5
1

<0,0> <0,1>

2
3

3
5
1

<1,1>

4
2

𝐺1 𝐺1 𝐺2 𝐺2

𝐺

4
1
5

<0,0> <0,1>

2
3

1
3
5

<1,1>

2
4

𝐺1 𝐺1 𝐺2 𝐺2

sort

Figure 2: Bucket compression

5.3 Bucket Compression
Each item generates L signatures, and each signature corresponds to
a bucket in a hash table. Suppose that each hash table has B distinct
signatures on average. This requires O(LBk) space for keeping the
bucket objects and thus the memory consumption is high, because
both L and B are large. For example, PLSH [30] uses L = 780 hash
tables and B = O(2k) where k = 16. Note that PLSH is designed for
SimHash, where each of the k hash values in a signature is boolean,
and B can be much larger for other LSH families [5, 7, 12, 24, 29, 31]
where each hash value is an integer.

We found that we can actually reduce theO(LBk) space toO(Bk)
space by compressing the buckets with the same signature across
the L hash tables. Such a compression is e�ective based on our
observation that the size of the union of the sets of signatures of
the L hash tables is cB, where c is usually a small constant. Thus,
we can just use one hash table with cB distinct signatures, and keep
all the item IDs with the same signature across the L hash tables
in one single location. As illustrated in Figure 2, we compress the
buckets with the same signature (i.e., < 0, 1 >) in the two hash
tables G1 and G2 into a single bucket in G. Then, we are able to
apply further optimizations as follows.

For each list of item IDs kept in a bucket, we �rst group them
by the workers where the real items are stored, and then sort each
group. For example, if we have two workers and an item with ID x
is stored in worker x%2, then the item IDs in Figure 2 are divided
into two groups (i.e., even and odd) and then sorted. This new
bucket structure has the following advantages. First, messages sent
to multiple Bucket objects with the same signature are now sent
to a single Bucket object. Second, to forward messages to items,
we do not need to locate the items by hashing their IDs one by
one, as the items are already grouped by their worker IDs and so
we can simply forward the messages to their worker. Third, when
their worker receives the messages (from multiple workers), we
only need to merge them by the target item IDs which are already
sorted (thus avoiding sorting during query processing).

5.4 Message Reduction
One major source of messages is the QueryMsg messages sent from
each Query object to its potential buckets and then forwarded to
all the items in each potential bucket. Since the answer function
may calculate the distance between a query and a candidate item,
the QueryMsg message should contain the query itself (i.e., a high
dimensional vector) and thus sending QueryMsg messages many
times through the network is expensive. To address this problem, we
broadcast the query (together with other information needed for its
evaluation) to each machine in the cluster, and only send query IDs
in QueryMsg. Thus, when a worker executes the answer function

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

640

on an item, it simply retrieves the corresponding query from the
local machine. This signi�cantly reduces the communication cost
especially for multi-probing LSH.

Sending query IDs in QueryMsg and item IDs in AnswerMsg can
be still costly since a large number of messages can be created
in each step in an iteration. Combiner is a standard technique
used to reduce the number of messages [6, 25]. To allow more
message reduction, we implement a machine-level combiner. For
the same QueryMsg message that is sent to multiple buckets in
multiple workers, if these workers are in the same physical machine,
LoSHa only sends a single QueryMsgmessage (together with the set
of bucket IDs) to the machine. After reaching the remote machine, a
thread is used to deliver the QueryMsgmessage to the corresponding
buckets in each worker in this machine. In addition, all messages
sent to the same machine are grouped together and sent in batches
to make better use of network bandwidth.

In the mapping step in each iteration, however, we implement a
two-level combiner because up to L copies of the same QueryMsg
message can be forwarded to the same item, i.e., the item appears
in all the L buckets to which the QueryMsg message is sent. We
�rst combine the same QueryMsg messages sent to the same item
at the worker level, and then we further combine the messages
for the same item at the machine level. Finally, we combine the
same QueryMsgmessages that are sent to multiple items in multiple
workers in the same target machine.

5.5 De-duplication
De-duplication is one of key issues in LSH implementations, as
the same query can be mapped to the same item up to L times. In
addition, after the query has been evaluated against an item in an
iteration, multi-probing may generate new potential bucket IDs
in any subsequent iterations such that the same item may appear
again in some of these new potential buckets, meaning that the
query would be evaluated against the item again if de-duplication
is not performed.

De-duplication is mainly done by using a hash set, tree index,
or bit vector [30]. In LoSHa, most duplicate copies of the same
QueryMsg message sent to the same item have already been elimi-
nated by the two-level combiner described in Section 5.4, and the
number of multiple copies of the same QueryMsg message sent to
the item from di�erent machines is usually very small. Thus, it is
e�cient to simply use a hash set to do the de-duplication.

LoSHa also di�ers from existing work in that we take an �exible
approach to decide where de-duplication should be handled. The
evaluation of a query against an item (e.g., distance calculation) can
be expensive for some applications (e.g., each data item is a dense
high dimensional vector), while it is cheap for other applications. If
the evaluation is expensive, then de-duplication is performed by an
Item object: the item inserts the received QueryMsg messages into
a hash set, which removes all duplicate copies. However, keeping a
hash set for each item may consume much memory and incur extra
cost of deleting old queries. Thus, if the evaluation is not expensive,
de-duplication is better performed by a Query object: we allow
duplicate copies of a query to be evaluated against an item, but
insert duplicate AnswerMsg messages received by the Query object
into a hash set, so that duplicate quali�ed items will be removed
and not included in the �nal answer.

Table 1: Datasets
Dataset Item# Dim# Entry#
SIFT1B 1,000,000,000 128 128

Tweets1B 1,050,000,000 500,000 avg 7.5
Glove2.2M 2,196,017 300 300

5.6 Online Processing and Fault Handling
LoSHa handles online queries and fault tolerance as follows.

Online queries. LoSHa is able to accept queries in real time.
New queries will be read into a bu�er in LoSHa. A greedy strategy
can be used here such that each worker processes approximately
the same number of queries. We adopt the mini-batch model as
in PLSH [30], where a worker bu�ers new queries and starts their
evaluation in the next iteration. Thus, new queries do not have to
wait until all existing queries �nish their evaluation.

Fault tolerance. Fault tolerance in LoSHa is by writing a copy
of the item and bucket layout in each machine to HDFS. Usually
we do infrequent batch-updates and hence we can re-write the
entire copy of the item and bucket layout to HDFS each time. If
the updates are frequent, we may apply checkpointing periodically.
Query evaluation results are not backed up and we simply re-run
the queries since the evaluation cost for a query is low.

6 EXPERIMENTAL EVALUATION
We evaluated LoSHa, by comparing with speci�c LSH implemen-
tations on existing general-purpose platforms and a highly opti-
mized system [30] for SimHash. We also assessed the e�ective-
ness of various optimizations in LoSHa and tested its scalability.
LoSHa was implemented in C++ and will be made open source on
http://www.husky-project.com/.

Setup. We ran the experiments on a cluster of 20 machines
connected by a Broadcom’s BCM5720 Gigabit Ethernet Controller.
Each machine has two 6-core 2.0GHz Intel Xeon E5-2620 processors,
48GB DDR3-1,333 RAM, and a 600GB SATA disk (6Gb/s, 10k rpm,
64MB cache). CentOS 6.5 with 2.6.32 linux kernel and Java 1.8.0 are
installed on each machine. We used Hadoop 2.6.0 and Spark 1.6.1.
For Hadoop, we set the number of containers to 11 per machine (i.e.,
one for each core) and each is allocated 4GB RAM, and leave 1 core
and 4GB RAM for other operations. For Spark, we set 4 workers
per machine, and each worker is assigned 3 cores and 11GB RAM.
We ran Spark on its standalone mode.For LoSHa, we used 12 cores
per machine.

Datasets. We used three real datasets. For dense vectors, we
used the largest publicly available dataset for ANN search, denoted
by SIFT1B, which contains 1 billion SIFT image descriptors from
http://corpus-texmex.irisa.fr/. We also used another dataset, de-
noted by Glove2.2M, which contains about 2.2 million vector repre-
sentations forwords obtained fromhttp://nlp.stanford.edu/projects/glove/
(Common Crawl: 840B tokens, 2.2M vocab, cased, 300d vectors).
For sparse vectors, we crawled 1.05 billion tweets from Twitter,
denoted by Tweets1B. Table 1 lists the number of items (Item#), the
number of dimensions of each item vector (Dim#), and the number
of non-empty entries in each vector (Entry#).

For each dataset, we randomly selected 1,000 items as queries
and removed these items from the datasets. Each query �nds the
top 10 ANNs of the query (unless otherwise speci�ed).

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

641

0

120

240

360

480

1.11.121.141.161.181.21.22

Se
co

nd
s

Error ratio

Spark SimHash

LoSHa SimHash

(a) SimHash on Glove2.2M

0

600

1200

1800

2400

1.21.31.41.51.61.7

Se
co

nd
s

Error ratio

Hadoop E2LSH

LoSHa E2LSH

(b) E2LSH on SIFT0.1B

Figure 3: Overall running time vs. Error ratio

0

30

60

90

120

10 20 30 40 50 60 70 80 90 100

GB

of hash tables

Spark SimHash

LoSHa SimHash

(a) SimHash on Glove2.2M

0

150

300

450

600

1 3 5 7 9 11 13 15

GB

of hash tables

Hadoop E2LSH

LoSHa E2LSH

(b) E2LSH on SIFT0.1B

Figure 4: Network tra�c vs. Number of hash tables

Quality measure. Given a query set Q , let o1,o2, . . . ,oK be
the top K ANNs returned by an LSH algorithm and o⇤1,o

⇤
2, ...,o

⇤
K

be the exact top K NNs. Let d(o,q) denote the distance between o

and q. Error ratio, ER = (1/(|Q |K))Õq2Q
ÕK
i=1(d(oi ,q)/d(o⇤i ,q)), is

widely used in existing work [7, 9, 20, 29, 31, 36] to measure the
quality of their algorithm. A smaller error ratio means better quality
of results, and an error ratio of 1 means that the exact results are
found. But for single-probing LSH algorithms, there is no guarantee
that K answers will be found. Thus, for those algorithms, we only
used the number of answers returned to calculate the error ratio,
and removed the query from Q if no answer was returned.

6.1 Comparison with LSH on Spark/Hadoop
We �rst compared LoSHa with speci�c LSH implementations on
Spark andHadoop. On Spark, SoundCloud implemented SimHash [3],
which is used in production [28] and the most popular LSH imple-
mentation on Spark. We denote it by Spark SimHash and compared
it with our implementation of SimHash on LoSHa, denoted by
LoSHa SimHash. On Hadoop, we used the Hadoop E2LSH imple-
mentation provided by the authors of [1] and compared it with our
implementation of E2LSH [5] on LoSHa, denoted by LoSHa E2LSH.
Spark SimHash and Hadoop E2LSH have more than 800 and 1500
lines of Scala/Java code, respectively, while both LoSHa SimHash
and LoSHa E2LSH have about 100 lines of C++ code.

Since both Spark SimHash and Hadoop E2LSH are slow and
require a lot of computing resources to process large datasets, we
could only test them on smaller datasets. SimHash is designed for
angular distance and is used for querying text data, and thus we
used the Glove2.2M dataset. We set k = 20 as normally used by
Spark SimHash, and varied L from 10 to 100. E2LSH is for Euclidean
space and thus we used it to query the SIFT image descriptor dataset.
However, SIFT1B is too large for Hadoop E2LSH and thus we only
used 0.1 billion items, denoted by SIFT0.1B. We set k = 20 and
varied L from 1 to 15 (note that the running time of Hadoop E2LSH
increases dramatically for larger L).

We report the overall running time of the four implementations
in Figure 3. As we increase L, i.e., the number of hash tables, the run-
ning time also increases but the error ratio decreases. However, the
running time of LoSHa increases much slower than Spark SimHash
and Hadoop E2LSH. LoSHa SimHash attains an error ratio of 1.11 in
22.6 seconds, while Spark SimHash requires 411.6 seconds. LoSHa
E2LSH attains an error ratio of 1.26 in 145.3 seconds, while Hadoop
E2LSH uses 2,005.9 seconds.

The superior performance of LoSHa over the Spark/Hadoop
implementations is mainly brought by our LSH-speci�c system im-
plementation such as �ne-grained data access and fast joins enabled
by the data layout. In contrast, the Spark/Hadoop implementations
follow the simple logic that joins queries and items by signatures
(as discussed in Section 2.2.2), which incurs high network commu-
nication cost. As shown in Figure 4, LoSHa has signi�cantly less
network tra�c (i.e., the total volume of messages sent over the
network) than Spark/Hadoop, which verify the e�ectiveness of our
LSH-speci�c system implementation. Note that Spark or Hadoop
implementations may be made more e�cient, but it will require
non-trivial programming e�orts from users. A better way could be
to implement LoSHa upon Spark and Haoop, so that users need not
worry about LSH-speci�c optimization details. Implementing the
LoSHa framework upon Spark/Haoop, however, is not the objective
of our work, which we leave as future work.

In Section 6.3, we will also compare LoSHa with the C++ MapRe-
duce implementation as we examine in details the e�ectiveness of
the optimization techniques in LoSHa.

6.2 Comparison with PLSH
This experiment compared LoSHa with PLSH [30], a highly opti-
mized distributed implementation of SimHash [3]. Unfortunately,
we could not obtain the code of PLSH to repeat their experiments.
We could only try to mimic their experiments on LoSHa. We sum-
marize our results in Figure 5.

PLSH achieved a recall of 92% by building 780 hash tables for pro-
cessing 1 billion tweets, which requires 6.4TB RAM in 100 machines.
If we use SimHash, we can generate at most 55 hash tables with
the total 0.96TB of memory in our cluster, thus giving a poor recall
of 27.4% only. Thus, we implemented the multi-probing version of
SimHash (denoted as multi-probing SimHash) using the “Candi-
date expansion using similar items” strategy in Section 3.3, which
improves the recall from 27.4% to 86.8% with only 55 hash tables.
We further measured the average querying time of multi-probing
SimHash, which is 1.86ms (vs. 1.42ms of PLSH). The result is sig-
ni�cant since LoSHa can process the same-scale data and achieve
performance not much worse than PLSH which uses signi�cantly
more computing resources (i.e., RAM and CPU).

We emphasize that PLSH is a speci�c system highly optimized
for SimHash only, while LoSHa is a general framework for imple-
menting di�erent types of LSH algorithms and thus it is expected
that LoSHa has poorer performance than PLSH for SimHash. In
fact, it is the multi-probing strategy that helps LoSHa to achieve
high performance using much less resources than PLSH. Therefore,
it is necessary for a system to be user-friendly for implementing
multi-probing algorithms. Note that our implementation of multi-
probing SimHash has about 100 lines of e�ective code only, but it is
de�nitely non-trivial to implement PLSH [30]. Thus, we believe that

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

642

0

0.25

0.5

0.75

1

SimHash Multi-probing SimHash

Re
ca

ll

(a) Recall

0

0.5

1

1.5

2

PLSH LoSHa

M
ill

ise
co

nd
s

(b) Average querying time

Figure 5: Performance of multi-probing LoSHa

Table 2: E�ectiveness of optimizations in LoSHa
Glove2.2M Tweets0.21B

Querying Network Querying Network
time tra�c time tra�c

LoSHa 0.52s 0.140GB 30.21s 20.13GB
No

de-duplication 0.48s 0.143GB 82.38s 74.98GB

No message
reduction 3.09s 4.95GB 282.29s 526.95GB

MapReduce
LoSHa 187.61s 355.34GB failed failed

the abstraction, API and LSH-speci�c implementation of LoSHa can
help promote multi-probing LSH on existing distributed platforms.

6.3 E�ects of Optimization Techniques
We now examine the e�ectiveness of the various optimizations
implemented in LoSHa. To do that, we created four versions of
LoSHa: (1) LoSHa with all optimizations enabled, (2) LoSHa with-
out performing de-duplication, (3) LoSHa by disabling the message
reduction techniques (i.e., query broadcasting and various combin-
ers), and (4) LoSHa by applying MapReduce (in C++) instead of the
two-level join.

We �rst tested the performance of the four versions of LoSHa
running SimHash on Glove2.2M, with k = 20 and L = 100. We also
tested on a larger dataset, Tweets0.21B, by processing 0.21 billion
tweets from Tweets1B, i.e., each machine processes 10.5 million
tweets. As Tweets0.21B is too large for single-probing SimHash
to work, we used the multi-probing SimHash, with k = 16 and
L = 55. We report the time and network tra�c for processing 1,000
queries in Table 2. We discuss the e�ects of di�erent optimizations
as follows.

E�ect of de-duplication. By disabling de-duplication, the
querying time of LoSHa for Glove2.2M is even reduced from 0.52s
to 0.48s. This is because word vectors in Glove2.2M are relatively
di�erent from each other and thus the amount of duplicate process-
ing is small, as veri�ed by the similar volumes of network tra�c
measured for LoSHa and LoSHa without de-duplication. Note that
duplicate copies may also be already removed by the two-level com-
biner in LoSHa (see details in Sections 5.4 and 5.5). On the other
hand, de-duplication itself incurs overhead and thus the overall
time may be even reduced without de-duplication. For the tweets
dataset, however, disabling de-duplication signi�cantly degrades
the performance and query processing is almost 3 times slower.
This is because many tweets are highly similar and thus the amount

0

40

80

120

160

5 10 15 20

M
ill

is
e

co
n

d
s

of machines

(a) M-SimHash on Tweets1B

0

10

20

30

40

5 10 15 20

M
ill

is
ec

o
n

d
s

of machines

(b) M-E2LSH on SIFT1B

Figure 6: Average query time vs. Number of machines

of duplicate processing is much larger. In addition, we use multi-
probing for Tweets0.21B, and hence duplicate candidates make
queries probe more buckets in subsequent iterations. Thus, the vol-
ume of network tra�c is also signi�cantly increased from 20.13GB
to 74.98GB when de-duplication is disabled in LoSHa.

E�ect of message reduction. The importance of the message
reduction techniques is obvious as disabling them immediately
increases the network tra�c by 35 times for Glove2.2M and 26
times for Tweets0.21B. As a result, communication cost dominates
the total querying cost and thus the overall query performance is
also severely degraded.

E�ect of two-level join. LoSHa’s data layout, which enables
the two-level join for query processing, is the most critical opti-
mization. When we replace the two-level join with a Map-Reduce
procedure, a large number of messages are transmitted over the
network and the processing time is also severely increased. Note
that both machine-level combiner and de-duplication are already
enabled. For Tweets0.21B, the system ran out of the (48 x 20)GB
of aggregate memory in the cluster. Note that the Map-Reduce
procedure is essentially a hash join between queries and items on
their signatures, but it generates much more messages than the
two-level join employed with LoSHa’s data layout.

6.4 Scalability
We tested the scalability of LoSHawith the two billion-scale datasets,
Tweets1B and SIFT1B. We varied the number of machines from
5 to 20, while �xing the number of data items per machine to 50
million.

For querying the tweets, we ranmulti-probing SimHash (denoted
by M-SimHash), with k = 16 and L = 55, as in Section 6.2. We
report the average querying time for processing 1,000 queries in
Figure 6a, which shows a gentle slowdown in query processing
when the number of machines increases. Since the number of data
items increases in the same rate as the increase in the number
of machines, the small increase in querying time is reasonable as
more data are transmitted through the network and also more
coordination among workers is needed. We observed that there
was no obvious straggler during the whole process and thus the
slowdown is more likely to be caused by communication, for which
a faster network (e.g., In�niband instead of Gigabit Ethernet) will
help reduce the slowdown.

We ran LoSHa E2LSH to query the SIFT data and used k = 20 as
in Section 6.1. However, we could use at most 3 hash tables because
the number of items is increased to 50 million per machine (note
that unlike a tweet, a SIFT item is a dense vector). The error ratio is

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

643

1.72. Thus, we implemented multi-probing E2LSH on LoSHa, which
reduces the error ratio to 1.23. There is also a small increase in
querying time when we increase the number of machines from 5
to 20, as shown in Figure 6b, for the same reason as we explained
for Figure 6a.

7 RELATEDWORK
LSH [13] has been extensively studied and various hash function
families for di�erent metrics have been developed, such as lp dis-
tance [5], angular distance [3], Jaccard distance [2], and so on. Since
single-probing [1, 18, 21, 22, 27, 28] requires a large number of hash
tables and cannot scale to handle large datasets, manymulti-probing
LSH algorithms have been proposed to use fewer hash tables and
yet achieve comparable quality of results [7, 12, 20, 24, 29, 31, 36].
However, they are single-core algorithms and many still rely on
external memory to handle large datasets.

Recently more distributed LSH algorithms have been developed
to handle larger datasets. PLSH [30] is a highly optimized LSH im-
plementation for distributed SimHash [3], but the development cost
of such a system tailor-made only for one speci�c LSH algorithm is
too high for general applications. Most existing distributed LSH al-
gorithms were implemented on general-purpose platforms such as
Hadoop [1, 18, 21], Spark [22, 28], and distributed hash tables [11].
However, these general-purpose platforms are not designed for solv-
ing domain-speci�c problems and thus the LSH implementations
on these platforms are also ine�cient.

For solving problems in a particular domain, quite a number of
domain-speci�c systems, such as Parameter Server [17], Power-
Graph [10] and LFTF [35], etc., have been developed, with which
one can easily implement di�erent types of distributed machine
learning and graph analytics algorithms in one framework. How-
ever, we are not aware of any work on the development of a general
framework that allows e�cient and scalable implementation of all
kinds of LSH algorithms.

8 CONCLUSIONS
We presented LoSHa, which o�ers a general, uni�ed programming
framework and a user-friendly API for easy implementation of a
wide range of LSH algorithms. We explored various LSH-speci�c
system implementation and optimizations to enable scalable LSH
computation. Our experiments on billion-scale datasets veri�ed the
e�ciency, scalability, and quality of results obtained by LoSHa’s im-
plementations of a number of popular LSH algorithms. We believe
that LoSHa can bene�t many applications of LSH as it can signi�-
cantly lower the development cost and achieve high performance.
Such a general framework for LSH can also lead to the development
of more e�cient distributed algorithms for new LSH applications.

Ack. This work was partially supported by Grants (CUHK 14206715
& 14222816) from the Hong Kong RGC, ITF 6904079, and Grant
3132821 funded by the Research Committee of CUHK.

REFERENCES
[1] B. Bahmani, A. Goel, and R. Shinde. E�cient distributed locality sensitive hashing.

In CIKM, pages 2174–2178, 2012.
[2] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise inde-

pendent permutations (extended abstract). In STOC, pages 327–336, 1998.

[3] M. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, pages 380–388, 2002.

[4] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable
online collaborative �ltering. InWWW, pages 271–280, 2007.

[5] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In SCG, pages 253–262, 2004.

[6] J. Dean and S. Ghemawat. Mapreduce: Simpli�ed data processing on large
clusters. In OSDI, pages 137–150, 2004.

[7] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based on
dynamic collision counting. In SIGMOD, pages 541–552, 2012.

[8] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi. DSH: data sensitive hashing for
high-dimensional k-nnsearch. In SIGMOD, pages 1127–1138, 2014.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In VLDB, pages 518–529, 1999.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In OSDI, pages 17–30,
2012.

[11] P. Haghani, S. Michel, and K. Aberer. Distributed similarity search in high
dimensions using locality sensitive hashing. In EDBT, pages 744–755, 2009.

[12] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-aware locality-sensitive
hashing for approximate nearest neighbor search. In PVLDB, volume 9, pages
1–12, 2015.

[13] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In STOC, pages 604–613, 1998.

[14] Learning to Hash. http://cs.nju.edu.cn/lwj/l2h.html. 2017.
[15] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P. Xing. On model

parallelization and scheduling strategies for distributed machine learning. In
NIPS, pages 2834–2842, 2014.

[16] J. Li, J. Cheng, Y. Zhao, F. Yang, Y. Huang, H. Chen, and R. Zhao. A comparison
of general-purpose distributed systems for data processing. In IEEE BigData,
pages 378–383, 2016.

[17] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long,
E. J. Shekita, and B. Su. Scaling distributed machine learning with the parameter
server. In OSDI, pages 583–598, 2014.

[18] LikeLike. https://github.com/takahi-i/likelike. 2017.
[19] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with graphs. In ICML, pages

1–8, 2011.
[20] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen. SK-LSH: an e�cient index structure

for approximate nearest neighbor search. In PVLDB, volume 7, pages 745–756,
2014.

[21] LSH-Hadoop. https://github.com/lancenorskog/lsh-hadoop. 2017.
[22] LSH-Spark. https://github.com/marufaytekin/lsh-spark. 2017.
[23] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph computing

systems: An experimental evaluation. In PVLDB, volume 8, pages 281–292, 2014.
[24] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH: e�cient

indexing for high-dimensional similarity search. In VLDB, pages 950–961, 2007.
[25] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[26] L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive hashing: A comparison
of hash function types and querying mechanisms. In Pattern Recognition Letters,
volume 31, pages 1348–1358, 2010.

[27] A. Rajaraman, J. D. Ullman, J. D. Ullman, and J. D. Ullman. Mining of massive
datasets, volume 1. 2012.

[28] SoundCloud-LSH. https://github.com/soundcloud/cosine-lsh-join-spark. 2017.
[29] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving c-approximate nearest

neighbor queries in high dimensional euclidean space with a tiny index. In
PVLDB, volume 8, pages 1–12, 2014.

[30] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S. Madden,
and P. Dubey. Streaming similarity search over one billion tweets using parallel
locality-sensitive hashing. In PVLDB, volume 6, pages 1930–1941, 2013.

[31] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and e�ciency in high dimensional
nearest neighbor search. In SIGMOD, pages 563–576, 2009.

[32] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search: A survey. In
CoRR, volume abs/1408.2927, 2014.

[33] F. Yang, Y. Huang, Y. Zhao, J. Li, G. Jiang, and J. Cheng. The best of both worlds:
Big data programming with both productivity and performance. In SIGMOD,
pages 1619–1622, 2017.

[34] F. Yang, J. Li, and J. Cheng. Husky: Towards a more e�cient and expressive
distributed computing framework. In PVLDB, volume 9, pages 420–431, 2016.

[35] F. Yang, F. Shang, Y. Huang, J. Cheng, J. Li, Y. Zhao, and R. Zhao. LFTF: A
framework for e�cient tensor analytics at scale. In PVLDB, volume 10, pages
745–756, 2017.

[36] Y. Zheng, Q. Guo, A. K. Tung, and S. Wu. Lazylsh: Approximate nearest neighbor
search for multiple distance functions with a single index. In SIGMOD, 2016.

Session 5C: Efficiency and Scalability SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

644

	Abstract
	1 Introduction
	2 Background
	2.1 Notion and Notations of LSH
	2.2 The State-of-the-art LSH

	3 LoSHa Programming Framework
	3.1 Overall Framework
	3.2 Application Programming Interface
	3.3 Multi-probing LSH Strategies
	3.4 Support for Non-Querying Applications

	4 Applications
	4.1 Multi-Probing PLSH in LoSHa
	4.2 Parallelizing C2LSH with LoSHa

	5 System Implementation
	5.1 System Architecture
	5.2 Data Layout
	5.3 Bucket Compression
	5.4 Message Reduction
	5.5 De-duplication
	5.6 Online Processing and Fault Handling

	6 Experimental Evaluation
	6.1 Comparison with LSH on Spark/Hadoop
	6.2 Comparison with PLSH
	6.3 Effects of Optimization Techniques
	6.4 Scalability

	7 Related Work
	8 Conclusions
	References

