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ABSTRACT

Coarse-grained operators such as map and reduce have been widely
used for large-scale data processing. While they are easy to mas-
ter, over-simplified APIs sometimes hinder programmers from fine-
grained control on how computation is performed and hence de-
signing more efficient algorithms. On the other hand, resorting to
domain-specific languages (DSLs) is also not a practical solution,
since programmers may need to learn how to use many systems
that can be very different from each other, and the use of low-level
tools may even result in bug-prone programming.

In [7], we proposed Husky which provides a highly expressive
API to solve the above dilemma. It allows developers to program
in a variety of patterns, such as MapReduce, GAS, vertex-centric
programs, and even asynchronous machine learning. While the
Husky C++ engine provides great performance, in this demo pro-
posal we introduce PyHusky and ScHusky, which allow users (e.g.,
data scientists) without system knowledge and low-level program-
ming skills to leverage the performance of Husky and build high-
level applications with ease using Python and Scala.
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INTRODUCTION

Distributed programming in a declarative and functional frame-
work (such as Spark [10] and Flink [1]) has become more and
more popular in recent years, as it allows users to create big data
pipelines using simple coarse-grained operators such as map and
reduce. However, these operators over-simplify a lot of fine-grained
computation in many classes of algorithms (e.g., machine learn-
ing, graph analytics) and hinder developers from gaining more fine-
grained control on how computation is performed. Thus, when per-
formance is critical or the resource cost is a concern (e.g., paying
for resources on the cloud), people usually favor specialized archi-
tectures (e.g., Parameter Servers for machine learning) over directly
using coarse-grained functional operators. On the other hand, re-
sorting to specialized systems incur a steeper learning curve and
more configuration/maintenance efforts.
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The Husky framework (http://www.husky-project.com/) aims to
solve the above problems. It provides much more flexibility than
existing frameworks such as Spark and Flink, allowing users to em-
ploy different programming paradigms (called patterns in [7]), or
even create customized patterns for specific problems or performan-
ce-critical paths, while keeping a simple set of core primitives and
a variety of algorithm libraries. However, it will be desirable if
users can also program in high-level languages such as Python and
Scala, and apply various mature library packages (e.g., visualiza-
tion, crawling) supported by these languages, in order to achieve
lower development cost and higher productivity.

To this end, we started two open source projects, PyHusky and
ScHusky, which developed the Python and Scala frontend of Husky,
respectively. PyHusky and ScHusky allow users (e.g., data scien-
tists) with little or no system programming background to exploit
the advantages (e.g., succinctness and high productivity) of high-
level languages, while making little compromise on performance
with the powerful Husky backend running underneath.

PyHusky and ScHusky have their own data collection represen-
tations, allowing Python-specific and Scala-specific operations to
be applied on them. Users write their programs declaratively just
like in Spark and Flink, forming a DAG of operators. They are
lazily evaluated and executed using a scheduler. However, the most
important highlight is that PyHusky and ScHusky are able to lever-
age functionalities in native Husky—the scheduler will move ex-
ecution to Husky when it finds that the computation involves no
Python/Scala-specific operations, or run some parts of the compu-
tation in Python/Scala side and then shift to native Husky whenever
possible for best performance.

The Husky Demo. While in [7] we presented the concepts and im-
plementation details of Husky, in this demo we focus on showing
SIGMOD attendees how PyHusky and ScHusky unleash the power
of Husky in a much easier and user-friendly way. SIGMOD atten-
dees will be able to use high-level languages (Python and Scala)
to leverage a variety of programming paradigms (e.g., Parameter
Servers, MapReduce, Asynchronous ML, Pregel, and so on) just
like in native Husky. In particular, attendees will see how PyHusky
and ScHusky bring the best of both worlds (i.e., high productiv-
ity of PyHusky/ScHusky and high performance of Husky) together
by seeing how quickly it is to build end-to-end high-level applica-
tions from scratch using PyHusky and ScHusky, such as a crawler
with visualizer and a streaming application with real-time analysis,
while at the same time enjoying high performance and scalability
of native Husky.

We will also dive deeper and elaborate the gain of shifting perfor-
mance-critical paths of a big data application to native Husky. In
addition, we will also show interested developers more about the in-
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ternals and how developers can expose a customized Husky library
to PyHusky/ScHusky by coding a small piece of binding code.

2. SYSTEM OVERVIEW

We first introduce some key ideas in Husky and its execution
engine. Then we show some performance figures to give readers
an understanding of its performance. After that we introduce pro-
gramming in PyHusky and ScHusky, the overall architecture, and
how it works with Husky.

2.1 Core Concepts

Husky is an in-memory system running on a cluster of machines
based on a shared nothing architecture. Each machine can run mul-
tiple workers, and each worker performs computation on its own
partitions of objects. There is also a master coordinating the work-
ers.

Lists of Structured Objects. Objects are fine-grained concepts.
Different types of objects can be defined in Husky, for example,
vertex objects in graph applications, or parameters in the context
of machine learning. Objects are compoundable, for example, sub-
classing a Vertex class from a TeraSort class may result in
vertices that are able to sort themselves (e.g., by their PageRank
values). Objects are mutable. Objects are organized into object
lists, which are a coarse-grained concept and facilitate the applica-
tion of coarse-grained transformations such as map and reduce.

Object Interaction. In Husky, computation happens by object
interaction. Husky supports both push-based and pull-based com-
munication, meaning that objects can push messages to each other,
or pull messages from each other. Objects have two different vis-
ibility levels. Local objects are only visible to objects in the local
worker. Global objects are globally visible. Besides push and pull
operations, an object can also migrate to different workers, which
is not only used to implement effective fault tolerance and load bal-
ancing, but also enables flexible programming.

Consistency. Husky supports switching between synchronous
and asynchronous executions. The synchronous execution adheres
to strict BSP-style consistency, while the asynchronous mode with
relaxed consistency improves the throughput for graph and ma-
chine learning workloads.

Patterns. The way that objects interact is called an object inter-
action pattern (or pattern for short). Husky is able to capture many
existing programming paradigms as different patterns, as shown
Figure 1. For example, the Pregel model [6] is just connecting
global objects (i.e., vertices in a graph) using pure push-based mes-
saging. The Parameter Server (PS) model [4] is captured by
Client objects pulling parameters from and pushing updates to
Server objects. A chain of MapReduce jobs can be modeled by
implementing the shuffle using pushes and generating new objects
based on push messages. Developers may just pick the model they
are familiar with to lower the learning curve and gain high pro-
ductivity. They may also create customized patterns in order to
efficiently solve a specific problem.

2.2 Performance

While we refer readers to [7] for detailed system implementation
and optimization of native Husky, here we briefly report some of its
performance results by showing how we can compose a highly ef-
ficient workflow with Husky. Suppose that we want to recommend
some Wikipedia pages to Wikipedia editors. In addition, we make
the PageRank scores of the pages available so that we can recom-
mend more influential pages. To do this, we construct a workflow
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Figure 1: Different object interaction patterns

M Preprocessing

Husky PageRank

B Matrix Factorization

1500

Spark

Specialists

0 500 1000 2000 2500 3000 3500 4000

Time (Seconds)

Figure 2: Performance on a Wikipedia workflow

as follows: (1) Preprocessing: parse the Wikipedia raw data, con-
struct the page-link graph, and extract the page-editor sparse ma-
trix; (2) PageRank: compute the PageRank values of the pages in
the page-link graph; and (3) Matrix Factorization: model the page-
editor relation using alternating least squares (ALS). We create a
customized pattern based on the pull operation to solve the pre-
processing, use Husky’s Pregel API for PageRank, and create a
customized pattern to implement blocked ALS algorithm.

The above Wikipedia workflow includes both
non-iterative coarse-grained workloads and iterative fine-grained
workloads. We compared Husky with Spark and a combination of
specialized systems. The specialized systems include the use of
Hadoop to do the preprocessing, GraphLab [3] for PageRank, and
Petuum [4] for matrix factorization (we used its fastest method,
ALS).

Figure 2 reports the results. With the flexibility to choose suit-
able patterns for different subtasks and the capability of handling
both coarse-grained and fine-grained workloads, Husky is able to
process mixed types of workloads in one system with remarkable
efficiency.

2.3 PyHusky and ScHusky

We now present some key concepts and components of PyHusky
and ScHusky.

2.3.1 Data Abstraction

In order to store and manipulate Python and Scala objects, we
have PythonObjectList and ScalaObjectList, respec-
tively, mirroring the ObjectList in native Husky. Unlike the
ObjectList in native Husky, these are data abstractions, mean-
ing that they are not necessarily materialized. Users can apply a
number of operators (to be introduced shortly) on them, forming a
DAG of operators, and the system will evaluate the results lazily. In
other words, the system will first optimize the DAG, schedule the
tasks in Python/Scala side as well as native Husky side, and then
compute the final results.



2.3.2  Operators

Operators can be classified into two types, namely, non-native
operators and native operators. Non-native operators include map,
reduce, and so on. They allow users to manipulate Python-specific
data with Python-specific libraries and tools (same for Scala), lever-
aging the productivity and succinctness of employing existing tools,
or to perform works that are more convenient in high-level lan-
guages (e.g., use map with ur11ib2 in Python for crawling, as
crawling is not CPU-bounded).

Native operators represent functionalities in native Husky, in-
cluding algorithmic computation such as machine learning and gra-
ph computation, as well as some frequently used ETL functionality
for parsing data from common input sources.

2.3.3 Scheduling and Execution

When the materialization process is triggered, the DAG con-
structed by the user is first processed by the PyHusky/ ScHusky
frontend. The frontend will first simplify the DAG (e.g., concate-
nation push-down). After that, it performs translations upon the
operators and breaks shuffling operations into two multiple phases.
One reason of doing that is for applying optimization. For exam-
ple, breaking reduce into two parts facilitates concatenate elimina-
tion. Another reason is that we need to break down operators into
multiple phases in order to match with the corresponding primi-
tives in native Husky. These operators are then serialized into a
queue. The serialization makes sure that all workers will execute
in the same order. This serialized queue is later requested by all
PyHusky/ScHusky workers.

The computation will take place in both PyHusky/ScHusky and
native Husky. The two sides will use inter-process communication
(IPC) to share data and cooperate with each other. We also im-
plemented various data loaders to transform Python/Scala-specific
data types to Husky data types in order to facilitate performance-
critical computation in native Husky.

There is one major difference between PyHusky and ScHusky.
As depicted in Figure 3, in ScHusky, each native Husky worker
thread manages one ScHusky JVM thread, since JVM has good
support for threading. However, for PyHusky, each native Husky
worker thread manages one PyHusky process, since the most pop-
ular Python interpreter implementation (i.e., CPython) has the GIL
(Global Interpretation Lock), making threading in PyHusky non-
trivial.

2.3.4  Optimization

There are various optimizations applied in PyHusky/ScHusky in
order to achieve high performance. Most importantly, PyHusky/Sc-
Husky always tries to shift computation to native Husky whenever
possible. For a DAG with native operators only, which may even
possibly involve interaction with external systems such as HDFS
and MongoDB, the data path will not go through Python/Scala run-
time at all.

For loading data from external sources to PyHusky/ScHusky, we
make a back-pressure loader in Husky in order to balance the load
among different PyHusky/ScHusky instances, which allows maxi-
mal re-use of existing Husky components while at the same time
maintaining the load balance. The back-pressure mechanism en-
sures that faster threads will tend to read more data from the source
and handle larger data collection.

For consecutive one-to-one or one-to-many mapping operators,
including map, flat_map, filter, and so on, in the actual execution
of PyHusky/ScHusky, they are all compressed into only one op-
eration, in order to improve locality and avoid scanning the data
collection multiple times.
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Another useful optimization is to bypass the Husky thread when-
ever communication can be directly done between two PyHusky/Sc-
Husky threads. This avoids costly IPC (or thread communication)
between the PyHusky/ScHusky process and Husky process.

3. DEMONSTRATION PLANS

We will demonstrate (1) the expressiveness of Husky in imple-
menting different programming paradigms in one unified frame-
work, (2) the usefulness of combining the productivity of Python/S-
cala and the efficiency of native Husky using PyHusky/ScHusky,
(3) the flexibility of Husky in integrating with the Hadoop ecosys-
tem and more, such as HBase, Hive and MongoDB, and (4) the high
performance of PyHusky/ScHusky, compared with both general-
purpose systems (e.g., Spark [10], Flink [1]) and domain-specific
systems (e.g., Petuum [4], GraphLab [3]), on various workloads, as
well as its scalability and fault tolerance.

3.1 Demo Setup

The back-end engine of Husky will be deployed and run on a
Linux computing cluster with 20 to 30 nodes, where each machine
has 24 cores and 48GB RAM, connected by Gigabit Ethernet as
well as InfiniBand. HDFS, Hive, HBase, MongoDB, Redis, Cas-
sandra, Parquet, etc., will also be connected with the Husky system,
and serve as data sources for Husky. Apart from large real datasets
used in [7, 5], we will also use streaming/crawled data, with which
we will demonstrate how quickly we can build an end-to-end big
data application using PyHusky/ScHusky.

In addition to distributed computing, we will also show SIG-
MOD attendees how to run Husky on a multi-core laptop (or even
in a Windows box) for data small enough to fit in main memory
of a single machine. This is especially useful for prototyping and
debugging.

3.2 Demo Details

The demo will focus on giving SIGMOD attendees an experience
of data analytics with PyHusky/ScHusky, especially for developers
who are interested in building high-performance big data applica-
tions on top of Husky with the help of high-level languages. Both
PyHusky and ScHusky are new, and almost all parts of the demo
are new and not shown in [7].

Interactive Data Analysis. Husky’s high-performance engine al-
lows us to support interactive data analytics. This feature is very
useful in exploratory data analysis, as well as debugging machine
learning applications. For example, an end user may submit some
ad-hoc top-k (or k-nearest-neighbor) queries based on some user-
defined criteria. In this way, the user can use Husky to learn a
statistical model (e.g., using stochastic gradient descent, alternat-
ing least squares, or logistic regression) from the data, query the
model interactively, tune the parameters based on the query results,
and in this way obtain a more accurate model. SIGMOD attendees
will be able to interact with Husky via PyHusky/ScHusky, and try
out interactive data analytics on Husky.

Building End-to-End Big Data Application. PyHusky and ScHu-
sky aim to make big data applications easy to build while having lit-
tle compromise on performance. In particular, SIGMOD attendees
will be able to investigate and try out the following applications:

o A distributed crawler that automatically accumulates and an-
alyzes data. The crawler has high performance due to its
stateful implementation in Husky, and is easy to deploy and
tune with the help of PyHusky/ScHusky.
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Figure 3: Architectural difference between PyHusky and ScHusky

e A real-time streaming analysis system, with the core data
analysis functionality done in native Husky and the visual-
izer implemented in Python/Scala.

SIGMOD attendees will be able to try out different ideas on Py-
Husky/ScHusky via an easy interactive scripting interface (e.g., the
Jupyter Notebook).

Integration with the Hadoop Ecosystem. One goal in the devel-
opment of Husky is the interoperability with existing systems and
tools in the Hadoop ecosystem. For example, Husky can load data
from Hive by issuing some SQL statements on it. SIGMOD atten-
dees can choose to read from different data sources and in different
data formats, e.g., HDFS, HBase, MongoDB, Redis, Cassandra,
Parquet, etc., and perform analytics over the data.

Performance Improvement. SIGMOD attendees will have the
chance to compare different solutions and understand the benefits
of using PyHusky/ScHusky. We will compare with baselines (e.g.,
Spark [10], Flink [1], Hadoop) where distributed computation are
all done in Python or JVM, and show the benefits of PyHusky and
ScHusky where performance-critical routines can be handled by
native Husky, including:

e Using PyHusky/ScHusky to leverage asynchronous machine
learning inside native Husky, such as NOMAD [9] and but-
terfly mixing [2].

Using PyHusky/ScHusky to shift computation-intensive work
to Husky, such as tensor/matrix factorization [8] and graph
analytics.

Understanding how a developer can write performance-criti-
cal paths in Husky and then expose to PyHusky and ScHusky
with a small piece of binding code.

Fault Tolerance and Elastic Scalability. To show that Husky is
fault tolerant, during the demonstration, we will occasionally kill
some of the Husky processes to simulate machine failures. We will
also randomly start new Husky processes in different machines to
simulate that new computing nodes are added into the cluster. SIG-
MOD attendees will see that Husky is able to sustain failures, and
automatically scale when new nodes join the cluster.

4. CONCLUSIONS

This demo plans to show how users can use PyHusky/ScHusky
to enjoy the best of both worlds, i.e., the productivity and succinct-
ness of high-level languages, and the flexibility and high perfor-
mance of native Husky. We will showcase how PyHusky/ScHusky
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unleashes the power of Husky for building high-performance big
data applications, and how easily this can be done via an easy in-
teractive scripting interface. In addition, through hands-on experi-
ences and comparisons, we will also illustrate the benefits of shift-
ing performance-critical paths to native Husky.
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