
A Comparison of General-Purpose Distributed Systems for Data Processing

Jinfeng Li, James Cheng, Yunjian Zhao, Fan Yang, Yuzhen Huang, Haipeng Chen, Ruihao Zhao
Department of Computer Science and Engineering

The Chinese University of Hong Kong
{jfli, jcheng, yjzhao, fyang, yzhuang, hpchen, rhzhao}@cse.cuhk.edu.hk

Abstract—General-purpose distributed systems for data pro-
cessing become popular in recent years due to the high demand
from industry for big data analytics. However, there is a lack of
comprehensive comparison among these systems and detailed
analysis on their performance, which makes it difficult for
users to choose the right systems for their applications and
hard for system developers to identify which aspects of a
system can be improved. In this paper, we conduct an extensive
performance study on four state-of-the-art general-purpose
distributed computing systems. We evaluate the performance
of these systems on three types of workloads that are very
common for big data analytics in industry today, namely
non-iterative bulk workloads, iterative graph workloads, and
iterative machine learning workloads. Through the study, we
identify the strengths and limitations of each system. We also
test the scalability and analyze the programming complexity
of using each system. Our results reveal useful insights on
the design and implementation of general-purpose distributed
computing systems, which help the development of better new
systems in the future.

I. INTRODUCTION

In recent years, we have seen a surge of distributed
computing systems for large-scale data analytics, which
have created high impact on both industry and academia.
MapReduce [8] and Hadoop [2] are among the first such
systems. However, MapReduce and Hadoop are not designed
for processing iterative workloads and are hence inefficient
for jobs such as machine learning and graph analytics.
More recent solutions [25], [1], [17], [12] take advantage of
the large aggregate memory in a modern computer cluster,
and design systems that focus on in-memory processing.
Due to much better performance as well as user-friendly
interfaces, these recent systems have become more popular
and have attracted much attention from industry. We chose
four recent systems for detailed performance comparison,
which are Spark [25], Flink [1], Naiad [17], and Husky [12].
Both Spark and Flink are Apache projects, and they have
been popularly used for big data analytics in industry.
Naiad is known for its impressive performance and was
shown to outperform earlier general-purpose systems such as
DryadLINQ [24]. Husky is a new system reported to have re-
markable performance in many types of workloads, and even
outperforms domain-specific systems such as GraphLab [9]
and Parameter Servers [11], [14], [21].

This study is mainly motivated by the following reasons.
First, while systems such as Spark and Flink are well-

known and popularly used, whether these popular systems
are really suitable for a given application is in fact unclear
to most users and researchers. Second, it would be good
for users to understand the limitations of these systems,
so that they can make a better choice of which system to
use. Third, the design differences in these systems, their
strengths and limitations, are valuable information that can
help researchers design better new systems, improve existing
systems, and develop better applications on these systems.

We study the performance of these systems using three
types of workloads: (1) non-iterative bulk workloads, (2) it-
erative graph analytics workloads, and (3) iterative machine
learning workloads. These three types of workloads cover a
wide range of important applications of big data analytics
in industry. We analyze how various techniques used in
each system affect the system performance in terms of
both computation and communication for each workload.
We discuss how the implementation and the programming
language of a system may result in different performance
for different tasks. We identify the strengths and limitations
of each system, and provide insights how a system can be
improved. We also show how user-friendly it is to program
in each of these systems for different types of data analytics
workloads. The results we obtained and the insights we drew
from this study are particularly useful for the development
of a new user-friendly system for efficient large-scale data
analytics.

We organize our study as follows. We first give a brief
introduction of various systems in Section II. Then, we
discuss the setup of our performance study in Section III.
We analyze in details the performance of each system in
Sections IV to VI for the three types of workloads. We test
the scalability of the four systems in Section VII. Finally,
we summarize our findings in Section VIII.

II. SYSTEM OVERVIEW

We first give an overview on the systems we studied, as
well as other systems and related work.

A. Spark

Spark [25] abstracts distributed datasets as resilient dis-
tributed datasets (RDDs). An RDD is a collection of
immutable records. Users can easily develop distributed
algorithms by defining coarse-grained transformations on

RDDs, such as map, flatMap, join, reduceByKey,
and so on. To support more efficient graph analytics, a graph
library, GraphX [10], was built on Spark, which implements
optimization techniques specifically for graph processing,
such as distributed join and materialized view maintenance.
Thus, in our experiments, we use GraphX to implement
graph algorithms in our performance evaluation.

B. Flink

Flink [1], also known as Stratosphere, combines low-
latency stream processing with high-throughput batch pro-
cessing. Flink provides three sets of APIs: DataSet API,
DataStream API, and Table API, which are for batch pro-
cessing, streaming processing, and SQL-like data analy-
sis, respectively. Since our performance study focuses on
general-purpose batch processing, we only use DataSet API
in this paper. DataSet is the data abstraction in Flink, and
transformations such as map, flatMap, reduce, union,
etc., can be applied on DataSets, which is similar to applying
transformations on RDDs in Spark. User defines DataSets
and specifies transformations on DataSets, while the Flink
system does the optimization and parallel execution of the
program. Flink includes a sub-system called Gelly, which
offers a set of graph operators to allow easier implementation
of distributed graph algorithms.

C. Naiad

Naiad [17] proposes the timely dataflow computing model,
which allows low-latency stream processing as well as
high-throughput batch processing. Naiad implements timely
dataflow in C# and provides a lightweight mechanism to
manage the timestamps. Naiad’s API provides four key
primitives described as follows. SendBy() and OnRecv()
are for asynchronous message processing. NotifyAt()
and OnNotify() are for synchronous processing. For each
message, Naiad will assign a timestamp to it and hence
different streams from different batches can be distinguished.
Users can cache the stream with a certain timestamp on
OnRecv(), and process all the data with this timestamp
together when OnNotify() is triggered. Naiad also pro-
poses distributed progress tracking protocol to guarantee
the correct invocation of OnNotify(). Naiad implements
LINQ to provide an API with declarative programming, and
also offers an API, called GraphLINQ for distributed graph
algorithms.

D. Husky

Husky [12] adopts a flexible computation model with
which users can define objects that can be both fine-
grained (e.g., vertices in a graph, records in a table)
and coarse-grained (e.g., subgraphs, tables), and specify
the actions of the objects and the interactions among
objects through messaging primitives such as push and
pull. Husky supports popular computing frameworks, e.g.,

MapReduce [8], Pregel [15] (for graph processing), and
Parameter Servers [11], [14], [21] (for machine learning),
in one unified framework.

E. Other Systems and Related Work

Many systems have been proposed to generalize MapRe-
duce and/or build high-level abstraction upon MapRe-
duce and Hadoop, e.g., Hive [3], Pig [18], Dryad [13],
DryadLINQ [24], and FlumeJava [6]. Other systems such
as Haloop [4], iMapReduce [26], and DynMR [23], aim
to improve the efficiency of Hadoop MapReduce (e.g., for
iterative computing).

Pavlo et al. [19] compared Hadoop with parallel DBMS
Vertica and a commercial DBMS, but iterative workloads are
not included in their benchmarks. Cai et al. [5] evaluated the
development and execution of machine learning algorithms
on various distributed platforms, but they did not consider
iterative graph algorithms and non-iterative bulk workloads.
Shi et al. [20] compared Spark with Hadoop, but did not
consider other general-purpose systems that support much
more efficient iterative computation than Hadoop.

III. EXPERIMENTAL SETUP

In the following four sections, we study the performance
of Spark, Flink, Naiad, and Husky on (1) non-iterative
bulk workloads, (2) iterative graph analytics workloads,
(3) iterative machine learning workloads, and (4) scalability.
In addition, we also compare the usability of the systems by
showing how easy it is to program the different tasks in each
system. All codes will be made available for repeatability.

We ran our experiments on a cluster with 18 machines,
each is equipped two 2.0GHz Intel(R) Xeon(R) E5-2620
CPU (with total 24 cores), 48GB RAM, a SATA disk (6Gb/s,
10k rpm, 64MB cache) and a Broadcom’s BCM5720 Gigabit
Ethernet Controller. CentOS 6.5 with 2.6.32 linux kernel is
installed on each machine. The JAVA version is 1.7.0 and
Scala version is 2.10.4.

We used Spark 1.5.1 and ran in standalone mode, and
disabled shuffling to disk to maximize its performance. We
used kryo serializer because it can save memory and accel-
erate many algorithms. We used Flink 0.9.1 and followed
settings advised by configuration guide. We used Naiad
release 0.5m. Naiad officially supports mono and thus we
built Naiad for mono and ran on our linux clusters. The
mono version is 3.12.1. We used Husky 0.1 and used its
default settings. We used HDFS of Hadoop 2.6.0.

IV. NON-ITERATIVE BULK WORKLOADS

We first analyze the four systems on two typical non-
iterative bulk workloads, WordCount and TeraSort.

val linesRDD = textFile(inputPath)
val resultRDD = linesRDD

.flatMap(_.split("\\W+"))

.map((_, 1))

.reduceByKey(_+_)

Listing 1: WordCount implementation in Spark

Table I: WordCount time (sec) by the end of each phase
End of P1 End of P2 End of P3 End of P4

Spark 51.9 57.5 58.1 72.9
Flink 15.4 32.2 32.9 126.3
Naiad 23.4 60.9 64.9 79.5
Husky 10.0 − 11.2 24.2

A. WordCount

WordCount is one of the most representative MapReduce
workloads, which counts the occurrences of each distinct
word in a corpus. In the Map phase, input sentences are
split into words. These words are then mapped to (key, value)
pairs, where the key is simply the word and the value is 1
for each word. The system then shuffles these (key, value)
pairs and sends them to different Reducers according to their
key. Combiners may be applied before shuffling in order to
combine all value’s (i.e., summing up all the ‘1’s) with the
same key. In the Reduce phase, the (combined) value’s of
the same key are sent to the same Reducer, and this Reducer
sums up all these value’s for the key, which is the count of
the corresponding word.

1) Implementation of WordCount: The above MapReduce
algorithm is implemented using transformation operators
provided in the APIs of Spark, Flink and Naiad. We take the
Spark implementation as an example, as shown in Listing 1.
textFile first reads files from HDFS to obtain an RDD,
linesRDD. Each line is then split into words by the
flatMap transformation, and each word is then mapped
to (word, 1) pairs. Finally, reduceByKey shuffles these
pairs and sums up all values with the same key (i.e., each
distinct word). Combiner is automatically enabled by the
Spark system. The implementations in Flink and Naiad are
similar to that in Spark. For the implementation in Husky, we
define the words objects, each of which takes its content as
the key. After splitting a sentence, we send out the (word, 1)
pairs to these objects and each object will aggregate received
messages(i.e. counts).

2) Performance on WordCount and Analysis: The Word-
Count algorithms described in Section IV-A1 can be di-
vided into four phases: (P1) loading: input data is loaded
from HDFS and partitioned among workers, (P2) splitting:
sentences are split into words, (P3) mapping: each word is
mapped to a (word, 1) pair, and (P4) aggregating: the (word,
1) pairs are first combined and then shuffled to different
workers to obtain the final count for each word. We used
random text generator on Hadoop to generate dataset for
WordCount. In this experiment, we generated 90GB dataset.

Table II: WordCount time in each phase as % of total time
P1 P2 P3 P3

Spark 71.2% 7.6% 0.9% 20.3%
Flink 12.2% 13.3% 0.6% 73.9%
Naiad 29.4% 47.2% 5.0% 18.4%
Husky 41.3% − 5.0% 53.7%

Section VII will present more results on larger datasets. We
analyzed the design and implementation of each of these
four systems and have the following findings that can explain
the performance result.

For Spark, the dominating cost is the loading phase,
which is about 71.2% of Spark’s total running time for
WordCount, as shown in Table II. The loading time of Spark
is also much longer than that of all the other three systems.
We examined the cause and found that there is a totaling
about 81GB network traffic(out of 90GB input data) in the
phase of loading in Spark, which becomes the performance
bottleneck. Flink, Naiad and Husky do not have this problem
since they all have strategies that try to load local files
directly from local disks of each machine. Apart from data
loading, Spark is quite efficient on the other three phases of
WordCount, and its running time for these three phases is
also significantly shorter than that of Flink and Naiad.

For Flink, it finishes the first three phases in only 32.9
seconds, which is significantly faster than both Spark and
Naiad. However, Flink spends much more time on the last
phase, and its overall running time is longer than all the other
systems. Examining the source codes of Flink, we found that
when applying combiner in each local worker in the last
phase, Flink uses a sort-based implementation to group by
the (word, 1) pairs. This is expensive since the number of
distinct words is comparatively much smaller than the total
number of words in a corpus. On the contrary, the other three
systems all employ a hash-based implementation to group
by the (word, 1) pairs, which is significantly more efficient.

For Naiad, the processing is relatively slow at the splitting
phase, which takes 47.2% of its total running time. This is
because Naiad is implemented in C# and the C# function
used to split a string is inefficient. Apart from splitting,
the mapping phase in Naiad also takes much longer time
than that in the other systems. The mapping phase in
Naiad is about 5.0% of its total running time, while it is
less than 1% for Spark and Flink (note that the 5.0% for
Husky includes both splitting and mapping). To analyze
why mapping is more expensive in Naiad, we rewrite the
program and simply let the words stream flow into a new
processing element without any data transformation(i.e. map
each word to (word, 1) pair). We measured that mapping
now takes about 2.4 seconds. This implies that the trans-
formation takes (64.9 − 60.9 − 2.4) = 1.6 seconds only
and there is an overhead of 2.4 seconds in the system. In
order to support both low-latency stream processing as well
as high-throughput batch processing, Naiad introduces and

implements distributed progress tracking protocol, which co-
ordinates the above two executions but brings extra workload
to the system.

For Husky, it is the fastest among all the systems for
WordCount. It uses 41.3% of the total time on the data
loading, which is much more than the 12.2% and 29.4%
of Flink and Naiad. But this is not an indicator that Husky’s
loading is not efficient, as it only takes 10.0 seconds as
shown Table I. On the contrary, this shows that Husky is
very efficient since for the simple WordCount workload, the
computation is only a linear scan of the data and counting the
occurrences of each distinct word is a light-weight process,
and thus the total computation time should not be much
longer than the data loading time. Husky’s is implemented
in C++ and thus it can use the efficient tokenizer function
provided in the C++ library for splitting, while the splitted
words are immediately pipelined to the mapping phase and
thus we cannot clearly separate the splitting and mapping
phases, i.e., P2 and P3 in Tables I and II. Although C++
implementation leads to more efficient data loading and
splitting, it requires more development cost (e.g., lines of
code) compared with Spark, Flink and Naiad.

3) Insights from WordCount Workload: From the analysis
on the WordCount performance, we obtain the following
insights on how to design and implement an efficient system
for non-iterative bulk workloads such as WordCount.

Data partitioning. HDFS or any DFS is often deployed
on the same cluster which the system runs on. Thus, data
loaded from a local disk should go to a local partition
whenever possible, so that the data can be processed as
much as possible by the local worker, especially for bulk
data workloads. For example, if Spark does not distribute
much of the data loaded from a local disk to partitions in
remote machines, its overall performance can be comparable
with that of other systems on WordCount.

Programming language. Although the development time
is usually shorter if system developers use JAVA or C# to
implement a system, a C++ implementation may still have
many advantages when efficiency is considered, and it also
provides libraries with many highly efficient functions. Thus,
it is desirable to implement the back-end execution engine
in C++, especially when performance is critical. However,
as many data scientists (who may not be programmers
who are familiar with C++) today prefer to use a high-
level functional or declarative language to develop their
applications, it becomes also important to provide an API
that supports high-level languages such as Python.

Model-specific overheads. Message passing on Naiad is
asynchronous but notification is synchronized. In order to
guarantee the correct delivery of notification, Naiad pro-
poses the distributed progress tracking protocol [17]. Such
a protocol is only required when timely dataflow is the

Table III: TeraSort running time (in sec)
Spark Flink Naiad Husky

90GB data 300.6 132.1 125.6 122.7
18GB data 67.8 32.7 25.4 24.4

underlying computing model. The protocol counts the in-
and out-messages for each timestamp and thus may limit the
scalability of the system. However, Naiad is the only system
that supports low-latency stream processing that can handle
one record at a time. When designing a system, a developer
should consider such tradeoff between more functionalities
and fast performance.

B. TeraSort

Sorting is one of the most common operations in data
processing. Thus, it is important to see how the systems
perform on sorting. We use TeraSort, one of the most scal-
able distributed sorting algorithm. TeraSort is also known as
a typical non-iterative bulk MapReduce workload [8]. We
generated 90GB records, where each record has 100 bytes.
We take the first 10 bytes as the key and the remaining 90
bytes as the value. TeraSort sorts the records by their keys.

Implementation. The implementations of TeraSort in the
four systems all follow the typical MapReduce TeraSort
implementation [8]. First, the system reads records from
HDFS. Then, the records are partitioned by their keys and
distributed to different workers. Finally, each worker sorts
their records independently. By designing a range partition-
ing function, records are distributed to workers based on the
ranges and the final sorted result is just to concatenate the
ranges of sorted records.

Performance on TeraSort and analysis. We report the
running time of each system for TeraSort in Table III.
We first conducted experiments on 18GB dataset and then
increased the input size to 90 GB.

Husky is the fastest among all the systems, but Naiad
and Flink also have comparable performance and the dif-
ference may be because Husky was in C++, as discussed
in Section IV-A3. As the dataset size increases 5 times, the
running time of the systems also increases roughly 5 times.
Spark is much slower, mainly because Spark separates the
execution of loading from shuffling, as shuffling starts only
after loading all records. In the other systems, loading and
shuffling are pipelined, where records are shuffled after they
are read.

V. ITERATIVE GRAPH WORKLOADS

We focus on two categories of graph workloads: all-active
and partially-active. For all-active workloads, all vertices
in the input graph are involved in the computation in each
iteration. PageRank computation belongs to this category.
For partially-active workloads, only partial vertices of the
input graph are involved in the computation and vertices

may be active in different iterations. The computation of
single-source shortest path (SSSP) belongs to this category.
PageRank and SSSP are the most typical workloads used in
the evaluation of existing graph processing systems, and are
thus chosen in our benchmark.

A. PageRank

Implementing distributed graph algorithms in existing
general-purpose systems are more complicated than imple-
menting tasks in Section IV. GraphX (i.e., Graph processing
library on Spark), Gelly (i.e., Graph processing library on
Flink) and Husky adopt Pregel’s vertex-centric API [15]
for implementing distributed graph algorithms. As shown in
Listing 2, each vertex v simply updates its PageRank value
according to the PageRank equation and then sends a value,
i.e., the new PageRank value divided by its out-degree, to
each of its out-neighbors for use in the next iteration.

def vertex_exec(v):
pr = (v.get_msgs())*0.85+0.15
v.set_value(pr)
for nb in v.get_nbs():
v.send_msg(pr/len(v.get_nbs()), nb.id)

Listing 2: PageRank implementation in Spark/GraphX,
Flink/Gelly, and Husky

Naiad provides the GraphLINQ library for graph pro-
cessing. As shown in Listing 3, Naiad first creates the
edges, degrees, and vertices sets, which keep the
sets of edges, out-degrees of vertices, and vertices in
the input graph, respectively. In the i-th iteration, Naiad
first joins vertices and degrees to obtain pr′(u) =
0.85 ∗ (pri−1(u)/|Γout(u)|) for each vertex u. Then,
GraphReduce joins vertices and edges to obtain∑

u∈Γin(v) pr
′(u) for each vertex v, which is then used to

compute the final pri(v).

Function PageRank(
this vertices, degrees, edges){
vertices.NodeJoin(degrees,

(rank, degree) => rank*0.85/degree)
.GraphReduce(edges, (x, y) => x+y, false)
.Select(v =>

v.node.WithValue(v.value + 0.15))
}

Listing 3: PageRank implementation in GraphLINQ

Performance on PageRank and analysis. We use two
graphs, WebUK1 and Twitter2, and some of their statistics
are given in Table IV. Both graphs are popularly used in the
evaluation of existing specialized graph processing systems.

Table V reports the preprocessing time taken by each
system and their running time per iteration. Husky has better

1http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
2http://konect.uni-koblenz.de/networks/twitter mpi

Table IV: Graph Datasets
Graph —V— —E— max deg avg deg
Twitter 52,579,682 1,963,263,821 779,958 37.33
WebUK 133,633,040 5,507,679,822 22,429 41.21

Table V: PageRank preprocessing & running time (in sec)
Twitter WebUK

Pre-
processing

Per-
iteration

Pre-
processing

Per-
iteration

Spark 83.2 29.5 180.6 104.8
Flink 19.7 33.2 47.5 89.2
Naiad 56.4 9.1 148.0 22.7
Husky 11.9 2.9 26.0 3.3

Table VI: PageRank network traffic (NT) per iteration and
memory consumption (MC) (in GB)

Twitter
(NT)

WebUK
(NT)

Twitter
(MC)

WebUK
(MC)

Spark 19.1 53.6 23.0 34.6
Flink 10.1 21.1 <30.0 <40.0
Naiad 16.0 44.1 5.7 10.6
Husky 2.3 1.9 5.5 11.9

performance than the other systems in all cases. Besides it is
developed in C++, there are two more reasons. First, husky
presorts vertices by ids to accelerate the join operation of
messages and vertices. Second, husky requires much smaller
communication cost, as reported in Table VI, due to effective
machine-level combiner.

Spark has much longer preprocessing time as reported
in Table V, because GraphX needs to build a property
graph and other data structures such as bitmask, routing
table, and local indexes. These data structures are used
to accelerate the execution of iterative graph algorithms.
However, its running time is still worse than the other
systems (only slightly better than Flink on Twitter). There
are two main reasons. First, GraphX requires shuffling in
every iteration for joining vertices and edges. The shuffling
incurs high network traffic as shown in Table VI, since
GraphX applies vertex-cut partitioning and the edges of
a vertex may be stored in different machines. Second, as
RDDs are immutable, GraphX creates new RDDs, while in
Naiad and Husky most data structures are just updated and
re-used (Flink only re-creates a new vertex set). These RDDs
are large and hence costly to construct, which also uses three
times more memory than Naiad and Husky, as reported in
Table VI. Note that Flink’s actual memory consumption is
less than that reported in Table VI, because Flink requires
users to pre-allocate memory to the computation, which is
hard to guess and we assigned memory a bit more than
that used by Spark to ensure that Flink does not run out of
memory.

Table VII: SSSP performance (time in sec) on Twitter
Total
time

Pre-
processing

Running
time

5th
Iter

Last
Iter

Spark 496.6 50.9 445.7 26.2 37.1
Flink 169.1 19.5 149.6 23.3 8.3
Naiad 83.6 55.5 28.1 4.3 0.1
Husky 27.2 12.1 15.1 2.7 0.2

B. SSSP

SSSP computes the shortest-path distance from a source
vertex to every vertex in the input graph. Unlike PageRank,
SSSP computation only accesses partial vertices in each
iteration. Thus, GraphX, Gelly and GraphLINQ all attempt
to separate active vertices from inactive vertices in each
iteration. GraphX clusters edges so that edges belonging
to inactive vertices will not be scanned when joining
the vertex set and the edge set. Gelly uses incremental
Iteration operator and GraphLINQ uses IterateAnd-
Accumulate operator, which processes only active ver-
tices and corresponding edges in each iteration.

By identifying the active vertices, an implementation of
SSSP using a Pregel-like API in GraphX, Gelly and Husky
is more efficient than that an implementation using coarse-
grained transformations. The implementation of vertex pro-
gram, as shown in Listing 4, is similar to PageRank shown
in Listing 2, except that the aggregation used here is min
and the message to be sent to v’s neighbors is the sum of
v’s distance (from the source) and the weight of the edge to
its neighbor.

def vertex_exec(v):
dist = min(v.get_msgs())
if(v.value > dist){
v.set_value(dist)
for nb in v.get_nbs():
v.send_msg(dist + nb.weight, nb.id)

}

Listing 4: SSSP implementation in Spark/GraphX,
Flink/Gelly, and Husky

The implementation in GraphLINQ is similar to its
PageRank implementation in Listing 3. In each iteration,
only active vertices will join with the set of edges. The
distance values gathered from neighbors of a vertex will be
aggregated by a user-specified stateful processing element,
BlockingAggregate, which maintains a hash map with
key being the vertex id and value being the current distance
of the vertex from the source.

Performance on SSSP and analysis. Table VII reports
the total time, which includes the pre-processing time (2nd
column) and running time on SSSP (3rd column), of the
four systems. The results are for the Twitter graph only,
for which the number of active vertices is very large in the
5th iteration and very small in the last (i.e., 15-th) iteration.
Thus, we also report the time taken to process these two

iterations.
Husky gives the best performance because it allows fine-

grained access to vertices and edges, and thus in each iter-
ation only the active vertices and their edges are processed.
Naiad also only involves only the edges of active vertices in
the join in each iteration. However, Naiad does not support
combiner, which makes it slower than Husky. The use of
combiner in Husky has an obvious advantage as shown in
the 5th iteration, which has many active vertices and hence
many messages can be combined. On the contrary, in the last
iteration when there are few active vertices and messages,
Husky is not better than Naiad.

Spark and Flink involve the whole set of edges in the
join in each iteration, and are thus slower than both Naiad
and Husky. This is also the reason why in the last iteration
when there are few active vertices, Spark and Flink still
spend much time in the join. Spark takes 37.1 seconds in
the last iteration, which is much longer than its 5th iteration.
We found that the running time of Spark increases after each
iteration, which is probably due to the long lineage of RDDs.

SSSP on the WebUK graph, however, takes 664 iterations.
Due to the large number of iterations, Spark failed to
compute SSSP on WebUK. Flink took 5,534.2 seconds
to finish the job mainly because involving the whole set
of edges in the join in each iteration is time consuming.
Naiad took 144.6 seconds to read the whole graph (vs.
Husky’s 25 seconds) but it finished computing SSSP in 139.8
seconds, which is even considerably shorter than Husky’s
216.5 seconds. This is mainly because for WebUK, only 3
out of 664 iterations involve many active vertices, while the
other 661 iterations have few active vertices and hence few
messages, thus the benefit gained by applying combiner in
Husky does not pay off its overhead.

C. Insights from Graph Workloads

We obtain the following insights from the PageRank and
SSSP workloads.

Data access pattern. The much superior performance
of Husky for graph processing shows that coarse-grained
data abstractions such as RDDs (in Spark) and DataSets (in
Flink), as well as coarse-grained transformations, may not be
suitable for fine-grained graph operations. On the other hand,
Naiad can support efficient fine-grained operations with its
fine-grained primitives, but it will be desirable to implement
a more user-friendly API such as the vertex-centric API to
support higher-level graph operators (instead of using join
as in GraphLINQ).

Combiner. An effective combiner can significantly reduce
network traffic. As our results show that Husky’s machine-
lever combiner, i.e., combining messages for all workers in
the same machine, leads to lower network traffic than Flink’s
worker-level combiner, which in turn has lower network
traffic than Naiad which does not use a combiner (due

to a bug in GraphLINQ). However, for SSSP on WebUK
where there are few messages to be combined in most
iterations, our comparison on Husky and Naiad shows that
the overhead of applying combiner is higher than directly
sending the messages without first combining them. Thus,
Husky (and also other systems) may adopt a strategy that
uses a combiner only when there are sufficient number of
messages.

Graph Partitioning. The default partitioning algorithm
used in all the systems are simply by random hashing. A
number of effective graph partitioning algorithms have been
proposed recently [16], [22], and it has also been shown [9]
that vertex-cut partitioning can lead to more efficient graph
computation than edge-cut partitioning. The general-purpose
systems may apply the more effective partitioning algorithms
or vertex-cut partitioning to improve performance, although
one also needs to study how to efficiently apply these
partitioning strategies in existing systems.

VI. ITERATIVE MACHINE LEARNING WORKLOADS

We further compare these systems on two iterative ma-
chine learning workloads, logistic regression (LR) with gra-
dient descent and alternating least squares (ALS). In each it-
eration, LR needs to broadcast a huge amount of parameters
and update them. Thus, we can evaluate the ability of various
systems in handling large broadcast variables (i.e., variables
with many items to be broadcast, e.g., a long vector may
have millions of such items). ALS is popular in collaborating
filtering to learn latent factors. These latent factors can
be furthered used to predict the rating of a user to an
item. Other than per iteration time, data scientists are more
interested in how fast ALS can converge. Therefore, we will
evaluate the rate of convergence for different systems. We
implemented LR and ALS on Naiad but they did not scale
well. Since there is no programming guide for machine
learning algorithms on Naiad, it is hard to provide better
implementations and thus we skip Naiad in this section.

A. Logistic Regression

Given two set of data points, LR can train these points
and find a boundary to separate these points. A boundary
is usually represented as a D dimensional vector, where D
is the number of features of these points (e.g., the number
of distinct words in a corpus). We use ω to denote a
boundary, which is usually initialized with random numbers.
Gradient descent will be used to improve ω iteratively. In
each iteration, ω is made visible to all the points, so that each
point can be trained and generate partial gradient values to
ω. These partial gradient values are then summed up and
added to ω.

1) Implementation of Logistic Regression: The main dif-
ference in the implementations of LR in the three sys-
tems lies in the way ω is maintained, either centralized
or distributed. In the centralized way, ω is stored in the

Table VIII: LR performance (running time in sec)
RCV1 KDD10b

Per-Iter GUB Per-Iter GUB
Spark 1.9 < 1 48.3 41.1
Flink 4.9 < 1 - -
Husky 2.2 < 1 11.4 6.8
Husky-C 1.7 < 1 50.8 49.8

master, which is responsible for broadcasting ω to all other
machines, and collecting the partial gradient values and
updating ω. In the distributed way, each of the n machines in
a cluster manages a fraction (e.g., 1/n) of ω, then the system
will require each machine to broadcast its share of ω to all
the other machines. We may use a vector to represent the
features of a data point, but this requires more space since
many positions of this vector could be zero (e.g., a text to
be classified may contain only a small number of distinct
words in a corpus). We adopt the format in LIBSVM [7] to
represent features by a list of (idx, fv) pairs, where idx is
the feature position in the vector and fv is the feature value.

Spark and Flink implementation. Spark maintains ω
by the master node in a centralized way, stored in an
array. In each iteration, broadcasting ω to workers will be
done by the system automatically. When processing each
data point, partial gradient values will be generated by
mapping every feature. Next, reduceByKey aggregates
these partial values to generate the final gradient. Then,
collect gathers the gradients from all the workers to the
master to update ω. Flink handles ω similarly as Spark.

Husky implementation. Husky supports managing large
variables (e.g., vector, matrix) in a distributed manner. We
first register a broadcast variable, W. W maintains two fields,
each with D elements, one is to store ω and another is to sum
partial gradient values to form the gradient. Then, the add
function defines how to operate on the two fields of W at the
end of each iteration, in which the elements in the gradient
will be added to the corresponding elements in ω. The
system manages the distributed maintenance automatically.

2) Performance on LR and Analysis: We used the
RCV1 and KDD10b datasets from LIBSVM [7]. RCV1
has 677,399 points and 47,236 features. KDD10b has
19,264,097 points and 29,890,095 features. We set the
learning rate to 0.1. Table VIII reports the per-iteration time
and GUB time of running LR with each system, where
GUB time is the time taken to maintain ω, which involves
gathering the gradients(G), updating(U) and broadcasting(B)
ω.

Since RCV1 has only 47K features, ω is small. Thus, the
GUB time is short and hard to measure. The per-iteration
time is also short and hence there is no significant difference
in performance between the systems.

The KDD10b dataset has a much larger ω (nearly 30
million features). Flink failed on KDD10b since they cannot
handle more than one million features. Spark can run on

KDD10b but its centralized maintenance of ω leads to a
significantly longer GUB time than Husky, since the master
bears all the gathering and broadcasting workloads, while
all the workers are idle and waiting to receive ω. Thus, the
GUB workload in Spark is extremely imbalanced, while the
GUB workload in Husky are evenly distributed among all
the workers, and hence Husky is 6 times faster than Spark for
GUB. On the other hand, the training time, i.e., per-iteration
time minus GUB time, of Spark and Husky are comparable.

To further verify that the performance difference between
Spark and Husky is due to the way how ω is maintained, we
simulated Spark’s centralized broadcast and implemented the
corresponding LR algorithm in Husky, denoted by Husky-C.
As also reported in Table VIII, the GUB time of Husky-C
for KDD10b is now comparable with that of Spark due to
the bottleneck of GUB with the master. On the other hand,
for RCV1 when ω is small, GUB is not a bottleneck in
Husky-C and it is even faster than Husky.

B. Alternating Least Squares

Many recommender systems store ratings in a matrix R, in
which the element rij in the i-th row and the j-th column of
R denotes the rating of user i for item j. To predict missing
entries in R, a common way is to factorize R into the product
of two smaller matrices U and V such that R ≈ UTV .
U and V store the latent factors for each user and item,
respectively. The latent factors for a user (or an item) form
a feature vector. ALS learns feature vectors iteratively to
make the product of U and V become closer and closer
to R. Specifically, the process starts by initializing U with
random numbers and uses U to estimate V as follows. For
each item, it needs to get the feature vectors of all the users
who have rated the item and the corresponding ratings. Then,
a least squares problem can be modeled and a new feature
vector of the item can be obtained by solving this problem.
After obtaining V , we alternate to use V to estimate U in
a similar way. This process continues for a user-specified
number of iterations or until U and V do not change much.

1) Implementation of ALS: We first describe Husky’s im-
plementation(about 200 lines of code), as it follows closely
the ALS logic. We define two types of objects, user and
item. Each user object stores its feature vector as its state,
and is also associated with a set of neighbors, which are the
item objects this user rated (and the corresponding ratings
are also kept). Each item object constructs its state and
neighbors symmetrically. In each iteration, each user sends
its id together with its state (i.e., its feature vector) to its item
neighbors. Since multiple neighbors of the same user may
be in the same machine, the feature vector of the user can
be sent to that machine multiple times. The Husky system
does the de-duplication automatically. For each item, it gets
the feature vectors of its user neighbors by the user ids and
updates its feature vector. Then, the updated feature vectors

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300

R
M

SE

Seconds

Spark

Flink

Husky

(a) ALS on Netflix

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

R
M

SE

Seconds

Spark

Husky

(b) ALS on YahooMusic

Figure 1: ALS performance

will be sent to its user neighbors to update the feature vectors
of user objects in a symmetric way.

For Spark and Flink, we implemented ALS using coarse-
grained transformations, which however are very slow. But
for Spark and Flink, they also provide an efficient blocked
ALS algorithm in their libraries. The idea of blocked ALS
is similar to Husky’s implementation, except that users and
items are further grouped into blocks. In this way, the feature
vector of a user is only sent to the blocks that contain items
rated by the user, instead of to all items. However, implement
block ALS is not an easy task for most users, as it uses more
than 1000 lines of codes in both Spark and Flink.

2) Performance on ALS and Analysis: We compared the
converge rate for different systems. We used the Netflix and
YahooMusic datasets, which are widely used to evaluate
matrix factorization algorithms. Netflix contains 480,189
users, 17,770 items, and 100,480,507 ratings. YahooMusic
has 1,823,179 users, 136,736 items, and 699,640,226 ratings.
We set regularization parameter to 0.1.

Figure 1 reports the training root-mean-square error
(RMSE) versus training time, where the faster the RMSE de-
creases over time, the better is the performance of a system.
Although Spark and Flink use the same ALS algorithm, their
performance varies quite differently. Spark converges much
faster than Flink on Netflix, while Flink even failed to scale
on the larger dataset YahooMusic. Flink uses a low-latency
streaming engine to perform batch jobs. To offer low-latency
execution, Flink pipelines all the operators of a job and runs
as many of them as possible. However, these operators share
the same resources such as main memory and may lead to
severe contention. Blocked ALS uses many operators and
hence the pipeline is long. Flink attempts to cut the pipeline
by dividing the execution into three phases, i.e., building user
indices, item indices, and running ALS. Between different
phases, HDFS is used to transfer the intermediary results
and connect the execution. On the contrary, Spark runs the
operators one by one and thus has much lower overhead
than Flink.

Husky converges faster than both Spark and Flink for both
datasets. In fact, the per-iteration running time of both Spark
and Husky is very fast and there is no obvious difference.
However, to achieve this short per-iteration time, Spark has
to maintain the block id indexes, which incurs extra overhead

that Husky does not have.

C. Insights from LR and ALS Workloads

We obtain the following insights from the LR and ALS
workloads.

Library support. From the implementations of LR and
ALS in different systems, we can see that there is a lack
of primitives that are common to many machine learning
algorithms in the APIs of all the four systems. Spark and
Flink provide an efficient ALS implementation in their
library. Although the implementation requires non-trivial
effort from most users, it is easy to call and use such library
functions. Husky and Naiad may support even more efficient
tailor-made implementations, and thus they should provide
such library support to include common machine learning
algorithms, which is particularly desirable since Husky and
Naiad in general have a more efficient back-end system.

Maintenance of large variables. Large variables can be
maintained in a distributed manner so that the workload of
maintenance can be evenly distributed and does not cause
a performance bottleneck in any single machine. This is
particularly important for many machine learning algorithms
which require to maintain large variables, e.g. vectors and
matrices.

VII. SCALABILITY TESTS

In the section, we test the scalability of the four systems.
We choose WordCount to represent non-iterative workloads
and PageRank to represent iterative workloads. The results
are reported in Figure 2.

0

50

100

150

200

250

300

350

1 3 5 7 9 11

Ti
m

e(
se

co
n

d
s)

Input size per machine(GB)

Flink

Naiad

Spark

Husky

(a) WordCount scalability

0

20

40

60

80

100

120

18 15 12 9 6

Ti
m

e(
se

co
n

d
s)

Number of machines

Flink

Spark

Naiad

Husky

(b) PageRank scalability

Figure 2: Performance on scalability

WordCount scalability. We fixed the number of machines
to 18, each running 24 workers on 24 cores, and increased
the input sizes linearly. Flink does not scale well when the
input size becomes larger, mainly because its sort-based
aggregation becomes the bottleneck when the number of
intermediary results is large. Spark, Naiad and Husky use
hash-based aggregation and scale linearly. Naiad’s perfor-
mance is mainly affected by sentence splitting and the
distributed progress tracking, making it slower than Spark
when the size of the input increases. Spark’s performance
is mainly limited by the overhead of sending local data to
remote partitions. Husky does not have these overheads in
the other systems and can thus scale better.

PageRank scalability. We ran PageRank on Twitter and
report the per-iteration time by varying the number of
machines from 18 to 6, each running 24 workers on 24
cores. Spark and Flink started to scale non-linearly when
less than 12 machines were used. The main reason is that
they used too much memory. This is because their API uses
Scala, which makes them easier to program with high-level
operators, but at the same time also easy to generate large
amounts of intermediate results and lead to huge memory
usage. Flink has a more robust virtual memory management
implementation and so it is 3 and 5 times faster than Spark
when only 9 and 6 machines were used. We do not show
Spark’s time for 9 and 6 machines in Figure 2 because
showing them will make the line of Flink look linear.

Naiad and Husky scale much better and have low memory
consumption. When less than 12 machines are used, Naiad’s
performance starts to be affected by large amounts of
messages sent over the network, while Husky can effectively
trade CPU for network by the use of an effective combiner.

VIII. BUILDING A GOOD GENERAL-PURPOSE SYSTEM

Based on the findings and insights obtained from our
study, we list a number of important issues that may help re-
searchers and system developers in building a good general-
purpose distributed computing system for big data analytics.

Programming interface. Coarse-grained transformations
supported in high-level functional programming interfaces
make the implementation of algorithms such as WordCount
and TeraSort straightforward. However, it is quite difficult
to use high-level functional programming interfaces to im-
plement efficient algorithms for many graph analytics and
machine learning tasks that require fine-grained data access.
Thus, high-level functional programming interfaces do not
always make programming easier. Instead, supporting a
high-level functional programming interface with a good set
of transformation-based operators, while at the same time
allowing an object-oriented programming interface to have
fine control on data access and message passing, can provide
users much more flexibility and lead to the development of
more efficient algorithms using general-purpose systems.

Computing model and data abstraction. A suitable
computing model and data abstraction are the foundation
to a high-performance general-purpose system. Our study
shows that Spark and Flink adopt a coarse-grained data
abstraction and their computing model is also more suitable
for coarse-grained transformations. Thus, for fine-grained
data analytics tasks, these systems use an unnatural way to
process them (e.g., instead of directly updating an item in
a set, they use a join that accesses all items). Thus, a good
computing model should consider to support both coarse-
grained transformations and fine-grained data access.

Message combining. Message combining can effectively
reduce communication cost and hence improve system scal-

ability. Machine-level combiner can save more messages
than worker-level combiner, and should be adopted when
CPU is considerably faster than the network. However,
if the network is fast and/or the number of messages is
small, combiner may be better disabled in order to save its
overhead.

Data partitioning. All the systems use very simple data par-
titioning algorithms. More advanced partitioning algorithms
(e.g., those for graphs) can be applied to study the tradeoff
between the partitioning overhead and the benefits gained by
more balanced workload. This can be an important research
problem as its solution can improve all existing systems.
Dynamic partitioning to overcome imbalanced workload
during runtime can also be an interesting problem, but its
overhead may be too high.

REFERENCES

[1] Apache Flink. https://flink.apache.org/.

[2] Apache Hadoop. https://hadoop.apache.org/.

[3] Apache Hive. https://hive.apache.org/.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. The
haloop approach to large-scale iterative data analysis. VLDB
J., 21(2):169–190, 2012.

[5] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and C. M.
Jermaine. A comparison of platforms for implementing and
running very large scale machine learning algorithms. In
SIGMOD, pages 1371–1382, 2014.

[6] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. FlumeJava: easy, efficient
data-parallel pipelines. In PLDI, pages 363–375, 2010.

[7] C. Chih-Chung and L. Chih-Jen. LIBSVM: A library for
support vector machines. TIST, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[9] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed graph-parallel computation on nat-
ural graphs. In OSDI, pages 17–30, 2012.

[10] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in a
distributed dataflow framework. In OSDI, pages 599–613,
2014.

[11] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. R. Ganger, and E. P. Xing. More effective
distributed ML via a stale synchronous parallel parameter
server. In NIPS, pages 1223–1231, 2013.

[12] Husky. http://www.husky-project.com/.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys, pages 59–72, 2007.

[14] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and
E. P. Xing. On model parallelization and scheduling strategies
for distributed machine learning. In NIPS, pages 2834–2842,
2014.

[15] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD, pages 135–146,
2010.

[16] D. W. Margo and M. I. Seltzer. A scalable distributed graph
partitioner. PVLDB, 8(12):1478–1489, 2015.

[17] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: a timely dataflow system. In SOSP,
pages 439–455, 2013.

[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In
SIGMOD, pages 1099–1110, 2008.

[19] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A comparison of approaches
to large-scale data analysis. In SIGMOD, pages 165–178,
2009.

[20] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald,
and F. Özcan. Clash of the Titans: Mapreduce vs. spark for
large scale data analytics. PVLDB, 8(13):2110–2121, 2015.

[21] A. J. Smola and S. M. Narayanamurthy. An architecture for
parallel topic models. PVLDB, 3(1):703–710, 2010.

[22] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In KDD, pages 1222–1230, 2012.

[23] J. Tan, A. Chin, Z. Z. Hu, Y. Hu, S. Meng, X. Meng, and
L. Zhang. DynMR: dynamic mapreduce with reducetask
interleaving and maptask backfilling. In EuroSys, pages 2:1–
2:14, 2014.

[24] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level
language. In OSDI, pages 1–14, 2008.

[25] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, pages 15–28, 2012.

[26] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce: A
distributed computing framework for iterative computation.
J. Grid Comput., 10(1):47–68, 2012.

