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Abstract—A temporal graph is a graph in which vertices
communicate with each other at specific time, e.g., A calls B
at 11 a.m. and talks for 7 minutes, which is modeled by an edge
from A to B with starting time “11 a.m.” and duration “7 mins”.
Temporal graphs can be used to model many networks with time-
related activities, but efficient algorithms for analyzing temporal
graphs are severely inadequate. We study fundamental problems
such as answering reachability and time-based path queries in
a temporal graph, and propose an efficient indexing technique
specifically designed for processing these queries in a temporal
graph. Our results show that our method is efficient and scalable
in both index construction and query processing.

I. INTRODUCTION

Graph has been extensively used to model and study the
structures of various online social networks, mobile commu-
nication networks, e-commerce networks, email networks, etc.
In these graphs, vertices are users or companies, while edges
model the relationship between them. However, there is one
type of information that is often missing in these graphs for
simplicity of analysis: in reality, a relationship occurs at a
specific time and lasts for a certain period. Formally, this
can be modeled as a temporal graph, in which each edge
is represented by (u, v, t, λ), indicating that the relationship
from u to v starts at time t and lasts for a duration of λ.
There may be multiple edges between u and v indicating their
relationship occurring in different time periods.

Temporal graphs can be used to model and study many
time-related activities in the above-mentioned graphs. For
example, users follow or tag other users in different periods in
online social networks; friends chat with each other in different
time periods in mobile phone networks; people send messages
to each other at different times in email networks or instant
messaging networks; customers buy products from sellers at
different times in online shopping platforms, or different types
of transactions happened between different parties in different
periods in e-commerce networks, etc.

Research on non-temporal graphs (i.e., general graphs
without time information) has been extensively studied. How-
ever, for temporal graphs, even some fundamental problems
have not been well studied (e.g., graph traversal, connected
components, reachability, “shortest paths”, etc.). In this paper,
we study the problems of computing the reachability and the
“shortest path distance” from a vertex to another vertex in a
temporal graph.

Graph reachability and shortest path both have numerous

important applications. However, in a temporal graph, the
problems become more complicated due to the order imposed
by time. For example, consider a toy train-schedule graph
shown in Figure 1(a), where the number next to each edge
is the day (e.g., Day 1, Day 2, etc.) that a train departs, and
assume that the duration of each train takes 2 days. Suppose
now one wants to travel from a to d. If he chooses to go to d
via b, then he can leave either on Day 1 or Day 2, and he will
reach d on Day 6. Now suppose that he wants to depart later,
on Day 4, then he cannot reach d because the train departing
on Day 4 from a reaches c on Day 6, but the train leaves
from c on Day 5 to d. However, if we do not consider the
time information, then the traveler may still take the train on
Day 4 from a to c, not realizing that he would not catch the
train from c to d in this case.

Given two vertices, u and v, in a temporal graph, and a
time interval T , we study how to compute (1) whether u can
reach v within T , (2) the earliest time u can reach v within T ,
and (3) the duration of a fastest path from u to v within T . The
reachability, earliest-arrival time, and minimum duration from
source vertices to target vertices have been found useful in the
study of temporal networks such as temporal graph connectiv-
ity [1], temporal betweenness and closeness [2], [3], temporal
connected components in [4], information propagation [5],
information latency [6], [7], temporal efficiency and clustering
coefficient [4], temporal small-world behavior study [8], etc.

The above cited works, however, did not focus on the
design of efficient algorithms to compute reachability, earliest-
arrival time and minimum duration, and their results were
mostly obtained from small temporal graphs. Wu et al. [9]
made a significant improvement over existing algorithms [10]
and their algorithms can handle much larger temporal graphs
than existing works. However, their algorithms were not de-
signed for online querying, while in many applications it is
demanding to find the reachability, earliest-arrival time or
minimum duration from a source vertex to a target vertex
in real time. Wang et al. [11] presented an indexing method
to answer online queries of earliest-arrival time or minimum
duration from a source vertex to a target vertex. However,
their indexing method cannot scale to large temporal graphs.
In addition, their indexing method does not support dynamic
update, which is practically important for temporal graphs
since updates are frequent in most real-world temporal graphs.
In view of this, we propose an index to support efficient
online querying for large temporal graphs, which also supports
efficient dynamic update.



Our method first transforms a temporal graph into a new
graph which is a directed acyclic graph (DAG), on which
existing indexing methods for reachability querying [12], [13],
[14], [15], [16], [17], [18], [19], [20] can also be applied.
However, this DAG is often significantly larger than the DAGs
that are handled by existing methods. It also possesses unique
properties of temporal graphs, while all existing methods
were designed for handling non-temporal graphs. Thus, more
scalable methods that also consider the properties of temporal
graphs need to be designed.

We propose TopChain, which is a labeling scheme for
answering reachability queries. A labeling scheme, e.g., 2-hop
label [21], constructs two labels for each vertex v, Lin(v) and
Lout(v), where Lin(v) and Lout(v) are the set of vertices
that can reach v and that are reachable from v, respectively.
A query whether u can reach v is answered by intersecting
Lout(u) and Lin(v), since there exists a common vertex in
Lout(u) and Lin(v) if u can reach v. However, Lin(v) and
Lout(v) are often too large, and various methods have been
proposed to reduce their sizes [12], [13], [11], [18], [20].

TopChain decomposes an input DAG into a set of
chains [22], [23], where a chain is an ordered sequence of
vertices such that each vertex can reach the next vertex in the
chain. Thus, Lin(v) and Lout(v) only need to keep the last and
first vertex in a chain that can reach v and that is reachable
from v, respectively. However, the number of chains can still be
too large for a large graph, and as a solution, TopChain ranks
the chains and only uses the top k chains for each vertex. In
this way, the size of the labels is kept to at most 2k for each
vertex, and index construction takes only linear time, as k is a
small constant. The k labels may not be able to answer every
query, and thus online search may still be required. However,
the labels can be employed to do effective pruning and online
search converges quickly.

The contributions of our work are summarized as follows:

• We propose an efficient indexing method, TopChain,
for answering reachability and time-based path queries
in a temporal graph, which is useful for analyzing real-
world networks with time-based activities.

• TopChain has a linear index construction time and
linear index size. Although existing methods can be
applied to our transformed graph for answering reach-
ability queries, our method is the only one that makes
use of the properties of a temporal graph to design the
indexing scheme. TopChain also applies the properties
of temporal graphs to devise an efficient algorithm for
dynamic update of the index.

• We evaluated the performance of TopChain on a set
of 15 real temporal graphs. Compared with the state-
of-the-art reachability indexes [14], [16], [17], [19],
[20], TopChain is from a few times to a few orders of
magnitude faster in query processing, with a smaller
or comparable index size and index construction cost.

Paper outline. Section II defines the problem. Section III
describes graph transformation. Sections IV and V present
the details of indexing and query processing. Section VI
presents some improvements on labeling. Section VII reports

Table I. FREQUENTLY-USED NOTATIONS

Notation Description
G = (V, E) A temporal graph

e = (u, v, t, λ) ∈ E A temporal edge
t(e) The starting time of edge e
λ(e) The traversal time of edge e

Π(u, v) The set of temporal edges from u to v
π(u, v) The number of temporal edges from u to v
π Max. # of temporal edges between any two vertices in G

Γout(u,G) (Γin(u,G)) The set of out-neighbors (in-neighbors) of a vertex u in G
dout(u,G)(din(u,G)) The out-degree (in-degree) of a vertex u in G

G = (V,E) A directed acyclic graph (DAG)
Tout(v) The set of distinct starting (arrival) time
(Tin(v)) of out-edges (in-edges) of v

Vout(v) (Vin(v)) The set of vertices, 〈v, t〉, for each t ∈ Tout(v) (Tin(v))
Lout(v) (Lin(v)) The set of out-labels (in-labels) of a vertex v
C = {C1, . . . , Cl} A chain cover of G

code(v) Chain code of a vertex v
RC(v) (RC−1(v)) The set of chains that v can reach (can reach v)
firstv(C) (lastv(C)) The first (last) vertex in C that v can reach (can reach v)
RF (v) (RL(v)) Set of first (last) reachable vertices in RC(v) (RC−1(v))

RFcode(v) (RLcode(v)) Set of chain codes of vertices in RF (v) (RL(v))
topk(RFcode(v)) The first k chain codes in RFcode(v)
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Figure 1. A temporal graph G and its transformed graph G

experimental results. Section VIII discusses related work and
Section IX gives the concluding remarks.

II. PROBLEM DEFINITION

Let G = (V, E) be a temporal graph, where V is the set of
vertices in G and E is the set of edges in G. An edge e ∈ E is
a quadruple (u, v, t, λ), where u, v ∈ V , t is the starting time,
and λ is the traversal time to go from u to v starting at time t.
We denote the starting time of e by t(e) and the traversal time
of e by λ(e). Alternatively, we can consider that e is active
during the period [t, t+ λ].

If edges are undirected, then the starting time and traversal
time of an edge are the same from u to v as from v to u.
We focus on directed temporal graphs in this paper since an
undirected edge can be modeled by two bi-directed edges.

We denote the set of temporal edges from u to v in G by
Π(u, v), and the number of temporal edges from u to v in G by
π(u, v), i.e., π(u, v) = |Π(u, v)|. We also define the maximum
number of temporal edges from u to v, for any u and v in G,
by π = max{π(u, v) : (u, v) ∈ (V × V)}.

We define the set of out-neighbors of a vertex u in G as
Γout(u,G) = {v : (u, v, t, λ) ∈ E}, and the out-degree of
u in G as dout(u,G) =

∑
v∈Γout(u,G) π(u, v). Similarly, we

define the in-neighbors and in-degree of u as Γin(u,G) =
{v : (v, u, t, λ) ∈ E} and din(u,G) =

∑
v∈Γin(u,G) π(v, u).

A temporal path P in a temporal graph G is a sequence
of edges P = 〈e1, e2, . . . , ep〉, such that ei = (vi, vi+1, ti, λi)



∈ E is the i-th temporal edge on P for 1 ≤ i ≤ p, and
(ti + λi) ≤ ti+1 for 1 ≤ i < p. Note that for the last edge
(vp, vp+1, tp, λp) on P , we do not put a constraint on (tp+λp)
since tp+1 is not defined for the path P . In fact, (tp + λp) is
the ending time of P , denoted by end(P ). We also define the
starting time of P as start(P ) = t1. We define the duration
of P as dura(P ) = end(P )− start(P ).

Based on the temporal paths, we give the definitions of
minimum temporal paths [9] and temporal reachability as
follows.

Definition 1 (Minimum Temporal Paths [9]): Let
P(u, v, [tα, tω]) = {P : P is a temporal path from u
to v such that start(P ) ≥ tα, end(P ) ≤ tω}.

A temporal path P ∈ P(u, v, [tα, tω]) is an earliest-arrival
path if end(P ) = min{end(P ′) : P ′ ∈ P(u, v, [tα, tω])}. The
earliest-arrival time to reach v from u within [tα, tω] is given
by end(P ).

A temporal path P ∈ P(u, v, [tα, tω]) is a fastest path
if dura(P ) = min{dura(P ′) : P ′ ∈ P(u, v, [tα, tω])}. The
minimum duration taken to go from u to v within [tα, tω] is
given by dura(P ).

Definition 2 (Temporal Reachability): Given two vertices
u and v, and a time interval [tα, tω], u can reach v (or v
is reachable from u) within [tα, tω] if P(u, v, [tα, tω]) 6= ∅,
i.e., there exists a temporal path P from u to v such that
start(P ) ≥ tα and end(P ) ≤ tω .

Example 1: Figure 1(a) shows a temporal graph G. For
simplicity, we assume that the traversal time for every edge is
1 time unit. In G, a can reach d within time interval [2, 5] since
there is a temporal path P = 〈(a, b, 2, 1), (b, d, 4, 1)〉, while a
cannot reach d within [1, 3] since there is no temporal path
from a to d within [1, 3]. Given source vertex a, target vertex
d, and a time interval [1, 10], P1 = 〈(a, b, 2, 1), (b, d, 4, 1)〉
is an earliest-arrival path with arrival time 4 + 1 = 5, P2 =
〈(a, c, 4, 1), (c, d, 5, 1)〉 is a fastest path with duration (5 +
1) − 4 = 2. Note that P1 is not a fastest path, and P2 is not
an earliest-arrival path within [1, 10].

Problem definition: Given a temporal graph G, we propose
to construct an index, such that given a source vertex u and a
target vertex v, and a time interval [tα, tω], we can efficiently
answer the following queries: (1) whether u can reach v within
[tα, tω], (2) the earliest-arrival time going from u to v within
[tα, tω], and (3) the minimum duration taken to go from u to
v within [tα, tω].

Our method can also be applied to compute another type
of minimum temporal path called latest-departure path [9].
However, the concept of latest-departure path is symmetric to
that of earliest-arrival path. We hence omit the details.

III. GRAPH TRANSFORMATION

In addition to indexing and querying efficiency, another
key consideration in designing an indexing method for query-
ing temporal graphs is that the index must support efficient
dynamic update, since temporal edges are created and added
frequently over time in most real applications. We found that
the graph transformation method in [9] can be applied to design
an efficient index that also allows efficient dynamic update.

We first present how to transform a temporal graph G =
(V, E) into a new graph G = (V,E). The construction of G
consists of two phases:

1) Construction of vertex set: for each vertex v ∈ V ,
create vertices in V as follows.

a) Let Tin(u, v) = {t + λ : (u, v, t, λ) ∈
Π(u, v)} for each u∈Γin(v,G), and
Tin(v)=

⋃
u∈Γin(v,G) Tin(u, v), i.e., Tin(v)

is the set of distinct time instances at which
edges from in-neighbors of v arrive at v.
Create |Tin(v)| copies of v, each labeled
with 〈v, t〉 where t is a distinct arrival time in
Tin(v). Denote this set of vertices as Vin(v),
i.e., Vin(v) = {〈v, t〉 : t ∈ Tin(v)}. Sort ver-
tices in Vin(v) in descending order of their
time, i.e., for any 〈v, t1〉, 〈v, t2〉 ∈ Vin(v),
〈v, t1〉 is ordered before 〈v, t2〉 in Vin(v) iff
t1 > t2.

b) Let Tout(v, u) = {t : (v, u, t, λ) ∈
Π(v, u)} for each u ∈ Γout(v,G), and
Tout(v)=

⋃
u∈Γout(v,G) Tout(v, u).

Create |Tout(v)| copies of v, each labeled
with 〈v, t〉 where t is a distinct starting
time in Tout(v). Denote this set of vertices
as Vout(v), i.e., Vout(v) = {〈v, t〉 : t ∈
Tout(v)}. Sort vertices in Vout(v) in de-
scending order of their time.

2) Construction of edge set: create edges in E as fol-
lows.

a) Let Vin(v) = {〈v, t1〉, 〈v, t2〉, . . . , 〈v, th〉},
where ti > ti+1 for 1 ≤ i < h. Create a
directed edge from each 〈v, ti+1〉 to 〈v, ti〉,
for 1 ≤ i < h. No edge is created if h ≤ 1.
Create edges for Vout(v) in the same way.

b) For each vertex 〈v, tin〉 according to its order
in Vin(v), create a directed edge from 〈v, tin〉
to vertex 〈v, tout〉 ∈ Vout(v), where tout =
min{t : 〈v, t〉 ∈ Vout(v), t ≥ tin} and no
edge from another vertex 〈v, t′in〉 ∈ Vin(v)
to 〈v, tout〉 has been created.

c) For each temporal edge e = (u, v, t, λ) ∈
E , create a directed edge from the vertex
〈u, t〉 ∈ Vout(u) to the vertex 〈v, t + λ〉 ∈
Vin(v).

The following example illustrates graph transformation.

Example 2: Figure 1(b) shows the transformed graph G
of the temporal graph G in Figure 1(a), where λ = 1 for all
edges. Although there is a cycle 〈(a, c, 4, 1), (c, a, 6, 1)〉 in G,
G is a DAG.

IV. TOP-K CHAIN LABELING

In this section, we present the top-k chain labeling scheme,
which we name as TopChain. We focus on our discussion on
reachability queries, and we discuss how TopChain is applied
to answer time-based queries in Section V-B.

Most labeling schemes first transform the input directed
graph into a directed acyclic graph (DAG) by collapsing each
strongly connected component (SCC) into a super vertex, and



then construct labels on the much smaller DAG. Here, we
prove that a transformed graph is a DAG.

Given a transformed graph G = (V,E), for each vertex
〈w, t〉 ∈ V , let v = 〈w, t〉. For simplicity, we often simply use
v instead of 〈w, t〉 in our discussion. We use 〈w, t〉 only when
we need to refer to v’s time stamp t.

Due to space limit, all the proofs for the lemmas and
theorems are given in the full version of this paper [24].

Lemma 1: Let G = (V,E) be the transformed graph of a
temporal graph G, if the traversal time of each edge in G is
non-zero, then G is a DAG.

The size of G is O(|V| + |E|), and is even considerably
larger than G (see Table II). Thus, the DAGs we handle in this
paper are significantly larger than those used to test existing
indexes. In the following, we propose a more efficient method
that can handle much larger DAGs.

A. Label Construction

Given a DAG (not necessarily a transformed graph), G =
(V,E), we use u → v to denote that u can reach v in G,
and u 9 v if u cannot reach v. We assume v → v for any
v ∈ V . We define the set of out-neighbors of a vertex u in
G as Γout(u,G) = {v : (u, v) ∈ E}, and the out-degree
of u in G as dout(u,G) = |Γout(u,G)|. Similarly, we define
Γin(u,G) = {v : (v, u) ∈ E} and din(u,G) = |Γin(u,G)|.

TopChain constructs two sets of labels for each v ∈ V ,
denoted by Lin(v) and Lout(v), called in-labels and out-
labels of v. TopChain takes an input parameter k, which is
used to control the label set size, label construction time and
query processing time.

The main idea is to compute the top k labels based on
a ranking defined on a chain cover of the input DAG G =
(V,E), for Lin(v) and Lout(v) of each v ∈ V . Here, a chain
C is an ordered sequence of h vertices C = 〈v1, v2, . . . , vh〉,
such that vi → vi+1 for 1 ≤ i < h. A chain cover of G is a
disjoint partition {C1, . . . , Cl} of V , where Ci is a chain for
1 ≤ i ≤ l.

1) Definition of Labels: Given a chain cover C =
{C1, . . . , Cl} of G, and a rank rank(C) for each chain C ∈ C,
the labels of each v ∈ V are defined as follows.

Define a chain code for v as code(v) = (v.x, v.y), where
v.x = rank(C) and v in C, and v.y is the position of v in
C. Let RC(v) ⊆ C be the set of chains that v can reach;
formally, for each C ∈ RC(v), there exists a vertex u in C
such that v → u. For each C ∈ RC(v), let firstv(C) be the
first vertex in C that v can reach, i.e., if C = 〈v1, v2, . . . , vh〉
and firstv(C) = vi, then v → vj for i ≤ j ≤ h and v 9 vj′
for 1 ≤ j′ < i. Note that firstv(C) = v, where v in C, since
we assume v → v.

Define RF (v) as the set of first reachable vertices in the
set of reachable chains from v, i.e., RF (v) = {firstv(C) :
C ∈ RC(v)}. Define RFcode(v) = {code(u) : u ∈
RF (v)}. Sort the chain codes in RFcode(v) in ascending
order of u.x for each (u.x, u.y) ∈ RFcode(v), and let
topk(RFcode(v)) be the first k chain codes in RFcode(v) and
topk(RFcode(v)) = RFcode(v) if |RFcode(v)|≤k. Then,
Lout(v)=topk(RFcode(v)).

V3

V2

V1 V5

V6

V8

V7

V9

V10

V11

V12V4

Chain 1 Chain 2

Chain 3

Chain 4

Figure 2. Chain cover of G in Figure 1(b)

Similarly, let RC−1(v) ⊆ C be the set of chains that
can reach v, lastv(C) be the last vertex in C that can reach
v. Define RL(v) = {lastv(C) : C ∈ RC−1(v)}. Define
RLcode(v) = {code(u) : u ∈ RL(v)}. Sort the chain codes
in RLcode(v) in ascending order of u.x for each (u.x, u.y) ∈
RLcode(v), and let topk(RLcode(v)) be the first k chain
codes in RLcode(v) and topk(RLcode(v)) = RLcode(v) if
|RLcode(v)| ≤ k. Then, Lin(v) = topk(RLcode(v)).

Example 3: Figure 2 shows a DAG G, which is in fact G
in Figure 1(b) by relabeling the vertices, and a chain cover
of G, C = {C1, C2, C3, C4}, where C1 = 〈v1, v2, v3, v4〉,
C2 = 〈v5, v6, v7〉, C3 = 〈v8, v9, v10〉, C4 = 〈v11, v12〉.
The chain code of v3 is code(v3) = (1, 3) since v3 is at
the 3-rd position in C1. And RC(v3) = {C1, C3, C4},
since v3 can reach C1, C3 and C4. RF (v3) = {v3, v8, v12},
RFcode(v3) = {(1, 3), (3, 1), (4, 2)}, since code(v3) = (1, 3),
code(v8) = (3, 1), code(v12) = (4, 2). Let k = 2,
then Lout(v3) = top2(RFcode(v3))={(1, 3), (3, 1)}.
Similarly, RC−1(v3)={C1}, RLcode(v3)={(1, 3)},
Lin(v3)=top2(RLcode(v3))={(1, 3)}.

2) Algorithm for Labeling: We now present our method to
compute the above-defined labels, as outlined in Algorithm 1.
We discuss how to compute a chain cover of G and chain
ranking in Section IV-B. Given a chain cover C and a rank
rank(C) for each chain C ∈ C, Lines 1-4 first assign the
chain code of each vertex v to both Lout(v) and Lin(v).

Assume that each vertex in V is assigned a topological
order, which can be obtained by topological sort on G. Then,
Lines 5-8 compute Lout(v) for each v ∈ V in reverse
topological order. For each v, the algorithm computes the top
k labels with the smallest chain rank from the set of all out-
labels of v’s out-neighbors and the out-label of v. This can
be done by scanning Lout(u) for each u ∈ Γout(v,G) as the
merge phase in merge-sort until the top k labels are obtained,
since the labels in each Lout(u) are ordered according to chain
rank. In addition, Line 7 ensures that at most one vertex from
each chain can have its chain code included as one of the
top k labels. Then, the top k labels are assigned to Lout(v).
Similarly, Lin(v) for each v ∈ V is computed in Lines 9-12.

We now discuss the correctness and complexity of the
algorithm (see proofs in [24]).

Lemma 2: Algorithm 1 correctly computes Lout(v) and
Lin(v) for every vertex v ∈ V .



Algorithm 1: TopChain: Label Construction
Input : A DAG G = (V,E), a chain cover

C = {C1, . . . , Cl} of G, where Ci is ranked before
Cj for 1 ≤ i < j ≤ l, and an integer k

Output : Lout(v) and Lin(v) for every vertex v ∈ V
1 foreach vertex, v ∈ V , do
2 Let C be the chain that contains v;
3 Assign a chain code (v.x, v.y) to v, where

v.x = rank(C) and v.y is the position of v in C;
4 Lin(v)← {(v.x, v.y)}, Lout(v)← {(v.x, v.y)};
5 foreach vertex, v ∈ V , in reverse topological order do
6 Let L = Lout(v) ∪

⋃
u∈Γout(v,G) Lout(u);

7 Let Lk be the top k labels with the smallest chain rank
from L such that: if there exist two labels (u.x, u.y) and
(w.x,w.y) in L such that u.x = w.x and u.y < w.y, i.e.,
u and w are in the same chain, then (w.x,w.y) /∈ Lk;

8 Lout(v)← Lk;

9 foreach vertex, v ∈ V , in topological order do
10 Let L = Lin(v) ∪

⋃
u∈Γin(v,G) Lin(u);

11 Let Lk be the top k labels with the smallest chain rank
from L such that: if there exist two labels (u.x, u.y) and
(w.x,w.y) in L such that u.x = w.x and u.y < w.y, i.e.,
u and w are in the same chain, then (u.x, u.y) /∈ Lk;

12 Lin(v)← Lk;

Theorem 1: Given a DAG G = (V,E) and a chain cover
of G, Algorithm 1 correctly computes Lout(v) and Lin(v) for
all v ∈ V in O(k(|V |+ |E|)) time, and the total label size is
given by

∑
v∈V (|Lout(v)|+ |Lin(v)|) = O(k|V |).

We show how Algorithm 1 computes the labels as follows.

Example 4: Given the chain cover C = {C1, C2, C3, C4}
of G in Figure 2, and k = 2, Algorithm 1 first initializes
Lin(v) and Lout(v) to contain v itself. One topological order
is as follows: 〈v1, v2, v3, v5, v6, v7, v8, v9, v10, v4, v11, v12〉.
Then, in reverse topological order, we compute Lout(v)
for every v. We show how Lout(v3) is computed. First,
we compute Lout(v12) = code(v12) = {(4, 2)} and
Lout(v4) = code(v4) = {(1, 4)}. Next, we compute
Lout(v10) = code(v10) ∪ Lout(v4) = {(1, 4), (3, 3)},
Lout(v9) = top2(code(v9) ∪ Lout(v10) ∪Lout(v12)) =
top2{(3, 2), (1, 4), (3, 3), (4, 2)} = {(1, 4), (3, 2)},
Lout(v8) = top2(code(v8) ∪ Lout(v9)) = {(1, 4), (3, 1)},
Lout(v3) = top2(code(v3) ∪ Lout(v8)) = {(1, 3), (3, 1)}.
Similarly, we compute Lin(v3) = {(1, 3)}.

B. Chain Cover and Chain Ranking

One input to Algorithm 1 is a chain cover of G. An
optimal chain cover, which is one that consists of the minimum
number of chains, can be computed by a min-flow based
method in O(|V |3) time [23]. And the time is reduced to
O(|V |2 + |V |l

√
l) based on bipartite matching [25], where l

is the number of chains. Both of these two methods are too
expensive for processing large graphs.

Since our labeling scheme presented in Section IV-A is
not limited to a transformed graph but any general DAG, we
apply a greedy algorithm [22] to compute a chain cover if
the application is to answer reachability queries in a non-
temporal graph. The greedy algorithm grows a chain by

recursively adding the smallest-ranked out-neighbor of the last
vertex in the chain, where the ranking is defined based on
a topological ordering of the vertices. The algorithm uses
O(|V | log dmax + |E|) time, where dmax is the maximum
degree of a vertex in the DAG.

For processing a temporal graph G, we adopt a simple and
efficient method based on the property of G as follows. In the
transformed graph G = (V,E) of G = (V, E), each set of
vertices Vin(v) or Vout(v) naturally appears as a chain. Thus,
we can obtain a natural chain cover of G, i.e., C = {Vin(v) :
v ∈ V} ∪ {Vout(v) : v ∈ V}. In fact, we can reduce the
number of chains in C by half as follows. We merge Vin(v)
and Vout(v) into one single chain in ascending order of the
time stamp of the vertices. If there exist 〈v, tin〉 ∈ Vin(v) and
〈v, tout〉 ∈ Vout(v) such that tin = tout, we order 〈v, tin〉
before 〈v, tout〉.

Merging Vin(v) and Vout(v) into a single chain C can
approximately reduce query response time by half, since
logically Vin(v) and Vout(v) belong to a single vertex v in
the original temporal graph. For example, the chain cover in
Figure 2 is constructed in this way.

However, theoretically there is one small problem, which
can be easily fixed, though we need to show a rigorous proof
to show the correctness of our indexing method. We first
present the problem as follows. Let C = 〈u1, u2, . . . , uh〉. The
definition of chain requires that ui → uj for 1 ≤ i < j ≤ h.
However, in a temporal graph G, it is possible that a vertex
cannot reach itself, i.e., ui may not reach uj in the transformed
graph G, for some ui ∈ Vout(v) and uj ∈ Vin(v). Essentially,
merging Vin(v) and Vout(v) into a single chain C creates a
new graph Gnew, by adding an edge from 〈v, tout〉 ∈ Vout(v)
to 〈v, tin〉 ∈ Vin(v) to G for each v ∈ V if tout < tin.

However, Gnew only exists conceptually used to define the
chain cover, and we never really use Gnew in our algorithm
for label construction. Note that we do not compute the chain
cover from Gnew, but simply form a chain C from each Vin(v)
and Vout(v) in G, although the reachability of the vertices in
C is defined based on Gnew instead of G.

In the following theorem (see proof in [24]), we show
the correctness of Algorithm 1 when the input is G and the
chain cover is based on Gnew, even though there exists false
reachability information in Gnew. In Section V-B, we will also
show that the labels give correct answers to time-based queries.

Theorem 2: Let C be the chain cover defined based on
Gnew, where each Vin(v) and Vout(v) in Gnew are merged into
a single chain C ∈ C. Given G and C as input, Algorithm 1
constructs the same labels as the labels defined based on Gnew
and C (i.e., constructed by Algorithm 1 with Gnew and C as
input).

This chain cover can be naturally computed at no extra
cost during the process of graph transformation, and thus the
whole process takes only linear time. In addition, for the chain
code (v.x, v.y) of each vertex 〈v, t〉 ∈ V , instead of assigning
v.y as the position of v in its chain, we can directly use the
time stamp of v, i.e., v.y = t. This new assignment of v.y
is in fact significant when update maintenance of the labels is
considered. There can be frequent edge insertions in a temporal
graph over time and in this case the labels need to be updated



as well. If v.y is assigned as the position of v in its chain, then
updating the labels is more difficult since inserting a vertex in
a chain affects the position of all following vertices in the
chain, which can in turn affect the labels of a large number of
vertices in the graph. On the other hand, if v.y = t, then we can
simply insert the vertex in the chain and u.y for any vertex
u following v in the chain needs not be updated. Dynamic
update of labels will be discussed in Section IV-C.

Each chain in C is assigned a rank for labeling. There
are many different strategies to rank the chains. We only
discuss strategies with a low computation cost, that is, they are
practical for large graphs. Two such strategies are discussed as
follows.

• Random ranking: We rank the chains randomly. We
use this method as a baseline.

• Ranking by degree: Let Φ(C) denote the sum of out-
edges and in-edges of all the vertices in a chain C.
We rank the chains in descending order of their Φ
value, where the top-ranked chain has a rank of 1. The
rationale for this ranking is that the higher the value
of Φ(C), the higher is the probability that C can reach
and are reachable from a larger set of vertices in G.
Thus, assigning a top rank to C enables more vertices
to contain rank(C) in their labels, thus allowing a
more efficient query processing. We use this method
in our TopChain method. We apply radix sort to sort
the chains in order to assign ranks, and hence maintain
the linear index construction time complexity.

C. Dynamic Update of Labels

New edges and vertices may be added to a temporal graph
G over time. Since adding an isolated vertex is trivial, we only
discuss the addition of a new edge e = (a, b, t, λ). We need to
update G by inserting u = 〈a, t〉 into Vout(a) and v = 〈b, t+λ〉
into Vin(b), and adding an edge from u to v. Consequently,
the labels should be updated as follows.

First, we need to insert u into the chain C that is formed
from Vout(a) and Vin(a). If C does not exist, we create u as a
new chain, assign it a rank l that is larger than that of existing
chains, and initialize Lout(u)=Lin(u)=(l, t). If C exists, we
insert u into the right position in C according to t, and initialize
Lout(u)=Lin(u)= (rank(C), t). Let u1 be the vertex ordered
before u in C and u2 be the vertex ordered after u in C. We
compute Lin(u) as the top k labels from Lin(u)∪Lin(u1), and
Lout(u) as the top k labels from Lout(u)∪Lout(u2). Similarly,
we compute Lout(v) and Lin(v).

Second, after inserting a new edge (u, v) into G, we update
the labels as follows. We perform a reverse BFS starting from
vertex u in G to update the out-labels of vertices that are
visited, since only these vertices may change their out-labels.
For any vertex w visited, let w′ be the parent of w in the
reverse BFS, we update Lout(w) as the top k labels from
Lout(w) ∪ Lout(w′). If Lout(w) remains unchanged, then we
do not continue the search from w. Similarly, we conduct a
BFS starting from vertex v to update the in-labels of the visited
vertices.

The algorithm completes label updating in O(k(|V |+|E|))
time, which is the optimal worst case time. In practice, the

Algorithm 2: ReachQ(G,L, (u, v)): Reachability
Querying

Input : A DAG G = (V,E),
L = {(Lout(v), Lin(v)) : v ∈ V }p, and a pair of
query vertices (u, v)

Output : The answer whether u can reach v
1 if u.x = v.x then
2 if u.y ≤ v.y then
3 return true;

4 return false;

5 if Lout(u)� Lout(v) or Lin(v)� Lin(u) then
6 return false;

7 if Lout(u)⊕ Lin(v) = 1 then
8 return true;

9 foreach w ∈ Γout(u,G) do
10 if w has been not visited then
11 if ReachQ(G,L, (w, v)) returns true then
12 return true;

13 return false;

update is very efficient, as we demonstrate by experiments.

V. QUERY PROCESSING BY TOPCHAIN

We now discuss how we use the labels constructed in Sec-
tion IV to answer reachability queries and minimum temporal
path queries.

A. Reachability Queries

We process a reachability query whether u→ v as shown
in Algorithm 2. We first define a few operators used in the
algorithm.

We first define the operator ⊕:

Lout(u)⊕ Lin(v) =

 1

if ∃(r.x, r.y) ∈ Lout(u),

(s.x, s.y) ∈ Lin(v), s.t.
r.x = s.x and r.y ≤ s.y

0 otherwise

Intuitively, Lout(u) ⊕ Lin(v) tests whether there exist two
vertices r and s, where (r.x, r.y) ∈ Lout(u) and (s.x, s.y) ∈
Lin(v), such that r and s are in the same chain, and either
r = s or r is ordered before s in the chain. The following
lemma (see proof in [24]) shows how the operator can be used
in reachability query processing.

Lemma 3: If Lout(u)⊕ Lin(v) = 1, then u→ v.

The following example illustrates how the operator ⊕
works.

Example 5: Consider G in Figure 2 and k = 2, Algo-
rithm 1 computes Lout(v3) = {(1, 3), (3, 1)} and Lin(v12) =
{(1, 3), (3, 2)}. Consider a reachability query that asks whether
v3 → v12. Since Lout(v3) ⊕ Lin(v12) = 1 as ∃(1, 3) ∈
Lout(v3) and (1, 3) ∈ Lin(v12), we conclude v3 → v12.

Next, we define another operator � as follows. We say
Lout(u)� Lout(v) if one of the following two cases is true:



• Case (1): ∃(r.x, r.y) ∈ Lout(v), @(w.x,w.y) ∈
Lout(u) such that w.x = r.x, and ∃(s.x, s.y) ∈
Lout(u) such that s.x > r.x;

• Case (2): ∃(r.x, r.y) ∈ Lout(v) and (w.x,w.y) ∈
Lout(u) such that w.x = r.x and w.y > r.y.

Intuitively, Lout(u) � Lout(v) tests whether (1) there
exists a vertex r in a chain C1 in Lout(v), not exists any
vertex in Lout(u) in the same chain C1, and exists a vertex
s in a chain C2 in Lout(u), such that the chain rank of C2

is larger than that of C1, which indicates that v can reach at
least one vertex in C1, while u cannot reach any vertex in C1;
or (2) there exists a vertex r in a chain C in Lout(v), and a
vertex w in same chain C in Lout(u), such that r is ordered
before w in C, which indicates that the first vertex in C that
v can reach is r, the first vertex in C that u can reach is w,
and r → w.

Similarly, we say Lin(v)� Lin(u) if one of the following
two cases is true:

• Case (1): ∃(r.x, r.y) ∈ Lin(u), @(w.x,w.y) ∈ Lin(v)
such that w.x=r.x, and ∃(s.x, s.y) ∈ Lin(v) such that
s.x>r.x;

• Case (2): ∃(r.x, r.y) ∈ Lin(u) and (w.x,w.y) ∈
Lin(v) such that w.x = r.x and w.y < r.y.

The following lemma (see proof in [24]) shows how the
operator � can be used in reachability query processing.

Lemma 4: If Lout(u) � Lout(v) or Lin(v) � Lin(u),
then u9 v.

We illustrate how the operator � works as follows.

Example 6: Consider G in Figure 2 and k = 2, Algo-
rithm 1 computes Lout(v2) = {(1, 2), (2, 2)}, Lout(v3) =
{(1, 3), (3, 1)} and Lout(v5) = {(2, 1), (4, 1)}. Since ∃(3, 1) ∈
Lout(v3), @(w.x,w.y) ∈ Lout(v5) such that w.x = 3,
and ∃(2, 1) ∈ Lout(v5) such that it satisfies Case (1) for
Lout(v3) � Lout(v5), we have v3 9 v5. Since ∃(2, 2) ∈
Lout(v2) and (2, 1) ∈ Lout(v5) such that it satisfies Case (2)
for Lout(v2)� Lout(v5), we conclude that v2 9 v5.

Algorithm 2 first uses the chain code of the query vertices,
u and v, to check whether u and v are in the same chain. If
u and v are in the same chain, then by the definition of chain
and the fact that G is a DAG, we have u→ v if u.y ≤ v.y and
u9 v if u.y > v.y. Then, the algorithm applies the operators
⊕ and � on the labels of u and v to further examine whether
the query answer can be determined. If not, then the algorithm
processes the query by testing if any of the descendants of u
can reach v, by visiting the descendants in a depth-first manner.
If a descendant of u can reach v, then it implies u → v.
Otherwise, the algorithm finally returns u 9 v. Note that we
can prune some descendants of u in the search, which will be
discussed in Section VI.

Base on Lemmas 3 and 4, we have the following theorem.

Theorem 3: Algorithm 2 correctly answers a reachability
query whether u→ v.

B. Time-Based Queries

We now discuss how to answer temporal reachability
queries and minimum temporal path queries.

Temporal reachability queries. To answer a reachability
query whether a source vertex a can reach a target vertex b in
a temporal graph G within a time interval [tα, tω], we process
the query in the transformed graph G of G as follows.

We first find 〈a, tout〉 in Vout(a), where tout = min{t :
〈a, t〉 ∈ Vout(a), t ≥ tα}. Since the vertices in Vout(a) are
ordered by their time stamp, we find 〈a, tout〉 by binary search.
Similarly, we find 〈b, tin〉 in Vin(b), where tin = max{t :
〈b, t〉 ∈ Vin(b), t ≤ tω}.

Let u = 〈a, tout〉 and v = 〈b, tin〉. If u or v does not exist,
then the answer to the query is false. Otherwise, Algorithm 2
is called to answer whether u can reach v in G. If Algorithm 2
returns true, then a can reach b in G within [tα, tω]. Otherwise,
a cannot reach b within [tα, tω].

In addition, if Lines 9-12 of Algorithm 2 need to be
executed, we can employ the time interval [tα, tω] for search
space pruning as follows. For any descendant w = 〈c, t〉 of u
visited during the search, if t > tω , we can directly terminate
the search from w.

The above procedure, however, may give an incorrect query
answer in the case when a = b, i.e., u.x = v.x, u and v are in
the same chain. This is because the chains of G obtained in
Section IV-B may present false reachability information, i.e.,
u is ordered before v in a chain but u cannot reach v in G.
However, this can be easily addressed as follows. In the case
when u ∈ Vout(a) and v ∈ Vin(a), where u.x = v.x, we
simply call Algorithm 2 to answer whether ∃w ∈ W , where
W = {w : w ∈ Γout(u

′, G), u′.x = u.x, u′.y ≥ u.y, w.x 6=
u.x} (i.e., u′ is u or any vertex ordered after u in the same
chain, and w is an out-neighbor of u′ that is not in the same
chain of u′), such that w → v. We have u→ v if and only if
w exists.

The following theorem (see proof in [24]) proves the
correctness of processing a temporal reachability query.

Theorem 4: The algorithm described above correctly an-
swers a reachability query whether a can reach b in G within
[tα, tω].

Earliest-arrival time. We compute the earliest-arrival time
going from vertex a to vertex b within [tα, tω] as follows. We
first find 〈a, tout〉 in Vout(a), where tout = min{t : 〈a, t〉 ∈
Vout(a), t ≥ tα}. Then, we compute the set of vertices, B =
{〈b, t〉 : 〈b, t〉 ∈ Vin(b), tα ≤ t ≤ tω}.

Let u = 〈a, tout〉. We want to find v = 〈b, t〉 ∈ B such
that u→ v, where @v′=〈b, t′〉 ∈ B such that u→ v′ and t′<t.
If such a vertex v can be found, then the earliest-arrival time
going from a to b by any path in G within [tα, tω] is given
by t. If v is not found, then the corresponding earliest-arrival
path does not exist in G.

As vertices in B are ordered according to their time
stamp, we can employ a binary-search-like process to find v,
instead of querying whether u → w for each w ∈ B. Let
B = {w1, . . . , wh} and wi = 〈b, ti〉, where ti < ti+1 for
1 ≤ i < h. We start with wh. If u 9 wh, then u 9 wi for



1 ≤ i ≤ h; thus, we can conclude that the earliest-arrival path
from a to b does not exist in G within [tα, tω]. If u → wh,
then we choose the middle vertex in B, i.e., wh/2, and process
the query whether u → wh/2. In this way, we stop until we
find the first vertex wi ∈ B where u → wi, and return ti as
the query answer.

We process each query u → wi by Algorithm 2. The
correctness of the query answer follows from the fact that an
earliest-arrival path from a to b is simply a path starting from
a that reaches b at the earliest time.

Minimum duration. We compute the minimum duration taken
to go from vertex a to vertex b within [tα, tω] as follows. We
first compute A = {〈a, t〉 : 〈a, t〉 ∈ Vout(a), tα ≤ t ≤ tω}.
Then, from each ui = 〈a, ti〉 ∈ A, we obtain a starting time
ti, and find the earliest-arrival time going from a to b within
[ti, tω] by the same binary-search-like process discussed above
for computing earliest-arrival time. Let t′i be the earliest-arrival
time obtained starting at time ti. Then, the minimum duration
is given by min{(t′i − ti) : ui = 〈a, ti〉 ∈ A}. The correctness
of the query answer follows from the fact that a fastest path
from a (starting at time t) to b is also an earliest-arrival path
from a (starting at time t) to b.

VI. IMPROVEMENTS ON LABELING

We present two improvements on our labeling scheme.

Label reduction. With a close investigation of the property
of the transformed graph, we can reduce the label size by half.

Given a vertex 〈a, tout〉 ∈ Vout(a), let 〈a, tin〉 ∈ Vin(a)
where tin = max{t : 〈a, t〉 ∈ Vin(a), t ≤ tout}. Let u =
〈a, tout〉 and v = 〈a, tin〉. Then, we only need to keep Lout(u)
for u, and keep a pointer to Lin(v). When Lin(u) is needed
for query processing, we simply use Lin(v) instead.

Similarly, given a vertex 〈a, tin〉 ∈ Vin(a), let 〈a, tout〉 ∈
Vout(a) where tout = min{t : 〈a, t〉 ∈ Vout(a), t ≥ tin}. Let
u = 〈a, tin〉 and v = 〈a, tout〉. We only need to keep Lin(u)
for u, and keep a pointer to Lout(v). When Lout(u) is needed
for query processing, we simply use Lout(v) instead.

The following lemma shows the correctness of label reduc-
tion (see proof in [24]).

Lemma 5: Label reduction does not affect the correctness
of processing a temporal reachability query.

Topological-sort-based labels. We can further prune unreach-
able vertices to reduce the querying cost by some light-weight
labels.

We first introduce the topological level number [12], [14],
[17], [19] for a vertex v, denoted by `(v):

• If Γin(v,G) = ∅: `(v) = 1;

• Else: `(v) = max{(`(u) + 1) : u ∈ Γin(v,G)}.

We use `(v) in processing a reachability query as follows.
If `(u) ≥ `(v) and u 6= v, then u 9 v. This is true because
if u→ v, then v is a descendant of u and hence `(u) < `(v).
We can compute `(v) for each v ∈ V in linear time using a
single topological sort of G.

Table II. DATASETS
Dataset |V| |E| π |TG | |V | |E|
austin 2,676 320,652 659 100,928 629,664 1,253,961
berlin 12,845 2,093,977 2,221 109,500 3,175,993 6,753,520
houston 9,848 1,123,580 783 98,820 2,205,384 4,396,434
madrid 4,636 1,917,090 2,406 110,347 3,793,545 7,590,572
roma 8,779 2,290,762 2,170 109,392 4,431,239 8,881,221
toronto 10,790 3,310,871 1,664 109,660 6,415,493 12,875,896
amazon 2,146,057 5,776,660 28 3,329 9,883,393 13,166,635
arxiv 28,093 9,193,606 262 2,337 433,412 9,759,445
dblp 1,103,412 11,957,392 38 70 5,553,200 16,976,956
delicious 4,535,197 219,581,041 1,070 1,583 73,792,065 293,632,816
enron 87,273 1,134,990 1,074 213,218 1,366,786 2,504,928
flickr 2,302,925 33,140,017 1 134 12,600,099 44,358,410
wikiconf 118,100 2,917,777 562 273,909 3,191,271 6,009,300
wikipedia 1,870,709 39,953,145 1 2,198 34,814,941 77,196,220
youtube 3,223,589 12,223,774 2 203 11,497,869 21,139,520

A topological sort also gives an ordering of the vertices in
V . Let σ(v) be the position of a vertex v in a topological
ordering of V , where a vertex is ordered before its out-
neighbors. We can use σ(v) in processing a reachability query
as follows. If σ(u) > σ(v), then u9 v. Note that topological
ordering of V may not be unique, and this can be employed to
increase the pruning power. We compute topological sort by
DFS, and generate two topological orderings of V by visiting
the out-neighbors of a vertex v according to their original order
in Γout(v,G) as well as their reverse order in Γout(v,G).
Let σ1(v) and σ2(v) be the value of σ(v) obtained from the
two topological orderings of V . If either σ1(u) > σ1(v) or
σ2(u) > σ2(v), then u9 v.

VII. PERFORMANCE EVALUATION

We now report the performance of TopChain. We ran all
the experiments on a machine with an Intel 2.0GHz CPU and
128GB RAM, running Linux.

Datasets. We use 15 real temporal graphs, 6 of them,
austin, berlin, houston, madrid, roma and
toronto, are from Google Transit Data Feed project
(code.google.com/p/googletransitdatafeed/wiki/PublicFeeds),
where each dataset represents the public transportation
network of a city. The other 9 of them are from the Koblenz
Large Network Collection (konect.uni-koblenz.de/), and we
selected one large temporal graph from each of the following
categories: amazon-ratings (amazon) from the Amazon
online shopping website; arxiv-HepPh (arxiv) from the
arxiv networks; dblp-coauthor (dblp) from the DBLP
coauthor networks; delicious-ut (delicious) from
the network of “delicious”; enron from the email networks;
flickr-growth (flickr) from the social network
of Flickr; wikiconflict (wikiconf) indicating the
conflicts between users of Wikipedia; wikipedia-growth
(wikipedia) from the English Wikipedia hyperlink network;
youtube from the social media networks of YouTube.

Table II gives some statistics of the datasets. We show
the number of vertices and edges in each temporal graph
G = (V, E) and the transformed graph G = (V,E) of G. The
value of π varies significantly for different graphs, indicating
the different levels of temporal activity between two vertices
in each G. We also show the number of atomic time intervals
in each G, denoted by |TG |. If we break G into snapshots
by atomic time intervals, the wikiconf graph consists of
as many as 273,909 snapshots.



Table III. INDEX SIZE (IN MB)
Dataset TopChain IP+ Ferrari GRAIL++ PWAH8 TOL TTL
austin 31 29 34 38 296 497 110
berlin 157 145 173 354 3793 1443 439
houston 109 101 120 135 1993 2129 503
madrid 188 174 206 232 8997 6907 870
roma 219 203 241 270 11097 6075 1062
toronto 318 294 349 392 11646 5347 905
amazon 373 395 482 603 31886 2532 -
arxiv 21 19 24 26 53 6921 306
dblp 235 216 256 339 47390 - -
delicious 3410 3293 4010 4504 - - -
enron 60 61 72 83 321 312 94
flickr 524 491 558 769 - - -
wikiconf 124 142 176 195 1107 1105 214
wikipedia 1631 1542 1948 2125 - - -
youtube 464 441 496 702 - - -

A. Performance on Reachability Queries

Existing reachability indexes can be categorized into three
groups: (1) Transitive Closure, (2) 2-Hop Labels, and (3)
Label+Search. We compare with the state-of-the-art indexes
in each category: PWAH8 [16] in (1); TOL [20] in (2); and
GRAIL++ [19], Ferrari [14] and IP+ [17] in (3). We obtained
the source codes from the authors. All the source codes are
in C++, and we compiled them and TopChain using the same
g++ compiler and optimization option.

We report the index size, indexing time, and querying time
in Table III, Table IV, and Table V, respectively (note that TTL
is to be discussed in Section VII-B; TC1 and TC2 are variants
of TopChain to be discussed in Section VII-C). The best results
are highlighted in bold. The sign “-” in the tables indicates
that PWAH8 or TOL or TTL cannot be constructed within
time max(x, y), where x is 100 times of the indexing time
of TopChain and y is 10,000 seconds. For example, PWAH8,
TOL and TTL cannot be constructed in x = 38, 448 seconds
for delicious.

We set k to 5 for all the Label+Search indexes, i.e.,
TopChain, IP+, Ferrari and GRAIL++. The effect of k will
be studied in Section VII-C, in general, query performance
improves if we use a larger k, but a larger k also leads to
a larger index and longer indexing time. Since k sets the
number of labels for each vertex, with the same k value, the
four Label+Search indexes have comparable sizes, as shown
in Table III. In comparison, the index sizes of PWAH8, TOL
and TTL are much larger. This is because that the index size of
TopChain, IP+, Ferrari and GRAIL++ are linear to the graph
size, while PWAH8, TOL and TTL may take quadratic space
of the graph size.

For indexing efficiency, Table IV shows that TopChain is
the fastest in 11 out of 15 datasets, while for the other 4
datasets, the indexing time of TopChain is close to the best
one. Compared with PWAH8 and TOL, TopChain is clearly
much more scalable. PWAH8 and TOL have much worse
performance than TopChain in terms of both index size and
indexing time.

For query processing, we randomly generated 1000 queries,
and set [tα, tω] to be [0,∞] for all queries so that query
processing accesses the whole transformed graph. For all the
indexes tested, we applied the same procedure of processing
temporal reachability queries described in Section V-B.

Table V reports the total querying time by using each index.
TopChain is the fastest in 11 out of 15 datasets. Among the

Table IV. INDEXING TIME (IN SECONDS)
Dataset TopChain IP+ Ferrari GRAIL++ PWAH8 TOL TTL
austin 0.98 1.14 2.88 2.71 38.78 79.39 50.57
berlin 5.34 6.06 13.59 13.99 493.97 350.39 566.33
houston 3.91 4.05 9.58 10.72 247.98 368.61 306.20
madrid 6.14 7.10 17.56 18.07 1158.39 3078.81 1702.01
roma 7.40 8.51 19.17 21.06 1376.84 1574.39 2062.25
toronto 11.63 13.11 29.21 30.72 1405.75 1173.33 1061.96
amazon 28.03 26.54 43.35 72.02 2495.06 817.75 -
arxiv 2.37 4.78 4.80 8.08 27.73 6730.17 2761.00
dblp 17.82 17.31 31.40 45.91 7260.61 - -
delicious 384.48 489.63 848.24 778.89 - - -
enron 2.37 2.26 4.57 6.07 33.44 64.79 603.73
flickr 55.69 53.82 83.57 139.10 - - -
wikiconf 5.50 6.11 11.95 15.65 111.96 246.12 2530.21
wikipedia 151.29 142.57 259.06 298.07 - - -
youtube 30.82 33.43 54.04 78.32 - - -

Table V. TOTAL QUERYING TIME (IN MILLISECONDS)
Dataset TopChain TC1 TC2 IP+ Ferrari GRAIL++ PWAH8 TOL
austin 1.07 2.23 3.84 465.04 282.21 437.00 1.04 4.58
berlin 1.23 4.55 5.31 10867.10 5520.82 4063.79 1.64 2.74
houston 0.54 0.56 0.91 3325.21 2837.12 1619.67 1.20 3.53
madrid 0.52 0.53 1.46 3198.42 2974.85 1971.84 1.15 3.17
roma 0.69 0.85 1.21 7806.06 4326.89 4066.42 1.52 3.32
toronto 4.81 7.87 11.55 13899.10 7397.83 4631.84 1.53 3.76
amazon 7.38 34.36 29.24 28.29 65.13 44.29 39.08 5.22
arxiv 3.33 14.26 46.83 425.46 65.65 1154.70 23.77 4.39
dblp 88.12 981.26 1777.74 4353.38 3335.07 2644.30 161.03 -
delicious 27.05 1246.72 2648.84 60544.40 39117.00 4002.09 - -
enron 2.36 10.84 47.88 147.39 14.79 113.46 24.13 2.81
flickr 21.46 91.52 254.40 4073.06 2160.87 1495.67 - -
wikiconf 7.23 24.02 176.65 701.14 51.65 406.60 38.26 3.16
wikipedia 288.50 4074.23 15235.40 44810.10 8891.74 15758.72 - -
youtube 23.29 528.81 165.51 974.43 1099.03 324.17 - -

Table VI. TOTAL QUERYING TIME OF TOPCHAIN, TTL AND 1-PASS (IN
SECONDS)

Earliest-arrival Fastest
TopChain TTL 1-pass TopChain TTL 1-pass

austin 0.006 0.016 0.888 0.023 0.035 6.492
berlin 0.009 0.021 5.192 0.012 0.032 9.057
houston 0.015 0.025 2.542 0.015 0.046 12.782
madrid 0.003 0.059 4.551 0.019 0.136 17.029
roma 0.047 0.060 5.679 0.036 0.117 18.005
toronto 0.058 0.036 8.472 0.406 0.061 27.576
amazon 0.011 - 88.440 0.048 - 206.499
arxiv 0.006 0.086 16.502 0.027 0.086 276.874
dblp 1.095 - 39.427 1.673 - 310.934
delicious 0.010 - 611.542 0.153 - 5471.470
enron 0.001 0.004 3.325 0.002 0.002 14.777
flickr 0.109 - 125.018 0.469 - 1007.670
wikiconf 0.018 0.012 8.201 0.066 0.009 43.992
wikipedia 0.638 - 222.182 1.507 - 3766.520
youtube 0.076 - 60.800 0.127 - 233.982

four Label+Search indexes, TopChain is the fastest in all cases
and is from a few times to over two orders of magnitude faster
than IP+, Ferrari and GRAIL++. It is particularly important
for handling the larger datasets such as delicious and
wikipedia, while other methods have long querying time,
TopChain remains to be very efficient. This demonstrates
the effectiveness and better scalability of TopChain’s labeling
scheme for querying reachability in temporal graphs.

B. Performance on Time-based Path Queries

We compare TopChain with 1-pass[9], and the state-of-the-
art indexing method, TTL[11], for computing earliest-arrival
time and the duration of a fastest path from a vertex u to
another vertex v within time interval [tα, tω].

Table VI reports the total querying time of 1000 queries.
TopChain is orders of magnitude faster than 1-pass. TTL is
only able to handle 9 small datasets. The indexing time of
TTL is orders of magnitude longer than that of TopChain, as
reported in Table IV; while TTL also has a larger index size
than TopChain, as shown in Table III. Given such significantly
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Figure 3. Querying time of austin
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Figure 4. Querying time of arxiv

Table VII. TOTAL QUERYING TIME FOR VARYING INTERVALS (IN
MILLISECONDS)

Dataset I1 I2 I3 I4

austin 1.067 0.310 0.020 0.015
berlin 1.230 0.551 0.430 0.044
houston 0.544 0.051 0.044 0.026
madrid 0.516 0.333 0.223 0.060
roma 0.693 0.367 0.052 0.032
toronto 4.812 1.091 0.158 0.076
amazon 7.377 0.084 0.039 0.037
arxiv 3.332 0.024 0.011 0.009
dblp 645.109 0.085 0.037 0.035
delicious 27.048 0.339 0.073 0.067
enron 2.356 0.539 0.130 0.026
flickr 21.459 19.980 18.243 0.245
wikiconf 7.234 4.443 0.627 0.148
wikipedia 288.502 0.213 0.218 0.173
youtube 293.286 9.769 0.204 0.061

higher indexing cost, TTL is still only faster than TopChain
in just 2 of the 9 datasets that TTL can handle for querying
earliest-arrival time, and in just 2 out of the 9 datasets for
querying the duration of a fastest path. The result thus demon-
strates the efficiency of our method for answering queries in a
temporal graph in real time, while it also shows that TopChain
is more scalable than existing methods for processing large
temporal graphs.

C. Study on TopChain Label

Next, we study the strategy of chain cover and chain rank-
ing used in our labeling scheme. As discussed in Section IV-B,
TopChain merges Vin(v) and Vout(v) into a chain for each
v and rank the chains by degree. Here, we also tested two
variants of TopChain: (1)TC1: we compute the chains by
the greedy algorithm of [22] and rank them by degree; and
(2)TC2: we merge Vin(v) and Vout(v) into a chain for each
v and rank the chains randomly. The index sizes of TC1 and
TC2 are almost the same as TopChain. TopChain and TC2 have
similar indexing time, but TC1 takes longer time due to chain
computation. For query processing, as reported in Table V,
TopChain is significantly faster than both TC1 and TC2. This
result demonstrates the effectiveness of our labeling scheme in
using the properties of temporal graphs.

We also study the effect of k. We report query performance
using the two graphs, austin and arxiv, where the average
degree of the transformed graph of austin is around 2
(representing graphs with low degree), while it is larger than 20
for arxiv (representing graphs with higher degree). Figures 3
and 4 show that a larger k can improve query performance, but
it does not help when k is too large. For dataset austin, when
k is larger than 2, the querying time does not decrease as k

increases. Similarly, for dataset arxiv, the query performance
does not improve when k is larger than 4. This result shows
that a small k value is sufficient for good query performance.

D. Effect of Varying Time Intervals

The input time interval [tα, tω] can affect query perfor-
mance since a smaller interval gives a smaller search space.
We tested four different time intervals, I1 to I4. We set
I1 = [0, |TG |], where |TG | is shown in Table II. For each Ii,
for 1 ≤ i ≤ 3, we divide Ii into two equal sub-intervals so
that Ii+1 is the first sub-interval of Ii.

We used the same 1000 temporal reachability queries tested
in Section VII-A, but with different input time interval Ii.
Table VII shows that the total querying time of TopChain
decreases significantly from time interval I1 to I2 for most
datasets, and then the decrease becomes slowly when the
time intervals become smaller. This is because when the
time interval becomes smaller, the reachability also drops
significantly and thus more queries can be answered directly by
TopChain’s pruning strategies. But the pruning effect becomes
less and less obvious when the time interval is small enough.

E. Performance on Dynamic Updating

We compare TopChain with Dagger [26], which is an
extension of GRAIL [27] that supports dynamic update. There
are other methods that also handle dynamic update in reacha-
bility indexing [28], [29], [30], [31], [20], but they can handle
only a few smaller graphs that we tested and Dagger is the
only one that can scale.

Figure 5 reports the average update time due to edge
insertions, where TopChain+ shows the update time including a
re-computation of the topological-sort-based labels (presented
in Section VI) for each edge insertion. The result shows that
re-computing the topological-sort-based labels dominates the
updating time of TopChain, but TopChain is still significantly
faster than Dagger. Dagger only performs well when the graph
has low average degree, e.g., amazon. For query performance,
Dagger is worse than GRAIL++ [19], which is significantly
slower than TopChain as shown in Table V.

F. Scalability Tests

We generated synthetic temporal graphs for scalability
tests. We varied the number of vertices |V| from 1M to 8M
(M = 106), the value of π from 50 to 200 which controls
the number of multiple temporal edges between two vertices,
and the average vertex degree davg(u,G) from 5 to 20. We
generated three sets of datasets by varying one of |V|, π and
davg(u,G), while fixing the other two to their default values:
|V| = 2M, π = 100 and davg(u,G) = 10.

We compare TopChain with IP+, Ferrari and GRAIL++
since only these methods can scale to large graphs. Since
the indexing time and index size of these four methods are
comparable, we only report the total querying time for 1000
randomly generated queries.

Figure 6(a) shows that all the methods scale roughly
linearly as |V| increase, but the querying time of TopChain
increases more slowly when |V| becomes larger, i.e., from 4M
to 8M. Figure 6(b) shows that the querying time does not
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Figure 6. Total querying time on synthetic power-law temporal graphs

change significantly with the increase in π. But the effect of
davg(u,G) is very different on the four methods, as shown in
Figure 6(c). While the querying time of IP+ and GRAIL++
increases linearly as davg(u,G) increases, the query time of
TopChain and Ferrari even decreases. This is because as
davg(u,G) increases, more vertices become reachable from
others. TopChain and Ferrari can directly answer queries where
the source query vertex can reach the target query vertex, while
IP+ and GRAIL++ cannot avoid online search for such queries.

Overall, the results show that TopChain and Ferrari have
better scalability than IP+ and GRAIL++, while TopChain is
significantly faster than the other methods in all cases.

VIII. RELATED WORK

We focus our discussion on work related to reachability
indexing, as our method is also an indexing scheme for
reachability querying. Readers may refer to the full version
of this paper [24] for related work on temporal graphs.

Existing reachability indexes can be mainly categorized
into three groups: Transitive Closure, 2-Hop Labels, La-
bel+Search. The transitive closure (TC) of a vertex v is the
set of vertices that v can reach in G. Since the TCs are too
large, existing methods in this category mainly attempt to
reduce the TCs by various compression schemes [32], [25],
[33], [23], [34], [16], [35]. These methods are not scalable
due to the high indexing cost. The 2-hop labeling scheme was
first introduced in [21], which proved that computing a 2-hop
label with minimum size is NP-hard, and proposed a (log |V |)-
approximation. Many following works have attempted to re-
duce the label size by various heuristics [36], [37], [38], [12],
[13], [39], [18], [20], but all these methods are costly and
cannot scale to large graphs. TTL [11] is also a 2-hop indexing
method, which is designed to answer queries of earliest-arrival
time and the duration of a fastest path between two vertices
within a time interval in a temporal graph. TTL cannot scale to

large temporal graphs due to its expensive indexing cost, and
its performance was only verified using small temporal graphs
in [11]. TTL also does not support dynamic update, which is
necessary for temporal graphs.

The methods [40], [14], [15], [41], [17], [19] in the
category of Label+Search construct a small index with a small
construction cost, but their query performance is generally
much worse than methods in the other two categories. How-
ever, the recent methods, Ferrari [14] and IP+ [17], are able
to achieve comparable query performance with methods in
the other two categories. Ferrari applies tree cover to derive
intervals so that reachability queries can be answered by
checking the intervals [32]. However, the number of intervals is
too large and Ferrari keeps only up to k approximate intervals
for every vertex. IP+ selects the top k vertices, ranked based
on independent permutation, that a vertex v can reach or that
can reach v to be in Lout(v) or Lin(v). Thus, online search
is needed to process some queries for both Ferrari and IP+.

TopChain is also a Label+Search approach, and the key
idea of bounding the label size is similar to IP+ and Ferrari.
However, our method is the only one that uses the properties
of a temporal graph to design the labeling scheme. There
are non-trivial issues in using these properties, and TopChain
also supports efficient dynamic update based on the graph
properties, while both Ferrari and IP+ do not support update.

IX. CONCLUSIONS

We presented TopChain, an efficient labeling scheme that
employs the properties of a temporal graph for answering
temporal reachability queries and time-based path queries.
TopChain has a linear index construction time and linear index
size, which makes the method scalable. TopChain significantly
outperforms the state-of-the-art indexes [14], [16], [11], [17],
[19], [20], and supports efficient dynamic update. As temporal
graphs can be used to model many networks with time-ordered



activities, TopChain is a useful tool for analyzing these graphs.
We also plan to apply TopChain to develop scalable systems
for processing temporal graphs based on our existing work
such as Husky [42], Quegel [43], Blogel [44] and Pregel+ [45].
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